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Abstract

The reliability of a machine learning model’s con-

fidence in its predictions is critical for high-risk ap-

plications. Calibration—the idea that a model’s pre-

dicted probabilities of outcomes reflect true probabil-

ities of those outcomes—formalizes this notion. Cur-

rent calibration metrics fail to consider all of the pre-

dictions made by machine learning models, and are in-

efficient in their estimation of the calibration error. We

design the Adaptive Calibration Error (ACE) metric to

resolve these pathologies and show that it outperforms

other metrics, especially in settings where predictions

beyond the maximum prediction that is chosen as the

output class matter.

1. Introduction

The reliability of a machine learning model’s confi-

dence in its predictions is critical for high risk applica-

tions, such as deciding whether to trust a medical diag-

nosis prediction (1; 6; 10). One mathematical formula-

tion of the reliability of confidence is calibration (8; 2).

Intuitively, for class predictions, calibration means that

if a model assigns a class with 90% probability, that

class should appear 90% of the time.

Recent work proposed Expected Calibration Error

(ECE; 9), a measure of calibration error which has lead

to a surge of works developing methods for calibrated

deep neural networks (e.g., 5; 7). In this paper, we show

that ECE has numerous pathologies, and that recent cali-

bration methods, which have been shown to successfully

recalibrate models according to ECE, cannot be properly

evaluated via ECE.

Issues with calibration metrics include: not com-

puting calibration across all predictions, issues coming

out of fixed calibration ranges, and an inefficient bias-

variance tradeoff. We solve these issues through in-

cluding all predictions, adaptive calibration ranges, and

thresholding.

We identify and examine challenges in measuring

calibration and propose several new calibration met-

rics that are designed to resolve them: Static Calibra-

tion Error (SCE), Adaptive Calibration Error (ACE), and

Thresholded Adaptive Calibration Error (TACE). We

perform experiments across MNIST, Fashion MNIST,

CIFAR-10/CIFAR-100, and ImageNet 2012. They in-

dicate, for example, that ECE does not work well when

class predictions beyond the maximum prediction matter

more, and so our ability to evaluate recalibration meth-

ods such as temperature scaling suffers. TACE, ACE

and SCE and other more flexible calibration metrics are

more robust.

In general, we recommend the use of Adaptive Cali-

bration Error in calibrating a model. Our recommenda-

tion is grounded in experiments demonstrating that the

evaluation of calibration is more effective with ACE and

TACE (Figure 1, Table 2) than the others. TACE should

be used in settings where the class count is high (ex.,

100+ in our experiments) to use bins more efficiently

and compute a score that focuses on likely predictions.

2. Background & Related Work

2.1. Measurement of Calibration

Assume the dataset of features and outcomes {(x, y)}
are i.i.d. realizations of the random variables X,Y ∼ P.

We focus on class predictions. Suppose a model predicts

a class y with probability p̂. The model is calibrated if

p̂ is always the true probability. Formally,

P(Y = y | p̂ = p) = p

for all probability values p ∈ [0, 1] and class labels

y ∈ {0, . . . ,K−1}. The left-hand-side denotes the true

data distribution’s probability of a label given that the

model predicts p̂ = p; the right-hand-side denotes that
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value. Any difference between the left and right sides

for a given p is known as calibration error.

Expected Calibration Error (ECE). To approxi-

mately measure the calibration error in expectation, ECE

discretizes the probability interval into a fixed number

of bins, and assigns each predicted probability to the bin

that encompasses it. The calibration error is the differ-

ence between the fraction of predictions in the bin that

are correct (accuracy) and the mean of the probabilities

in the bin (confidence). Intuitively, the accuracy esti-

mates P(Y = y | p̂ = p), and the average confidence is

a setting of p. ECE computes a weighted average of this

error across bins:

ECE =
B∑

b=1

nb

N
|acc(b)− conf(b)| ,

where nb is the number of predictions in bin b, N is

the total number of data points, and acc(b) and conf(b)
are the accuracy and confidence of bin b, respectively.

ECE as framed in (9) leaves ambiguity in both its bin-

ning implementation and how to compute calibration for

multiple classes. In (5), they bin the probability interval

[0, 1] into equally spaced subintervals, and they take the

maximum probability output for each datapoint (i.e., the

predicted class’s probability). We use this for our ECE

implementation.

3. Issues With Calibration Metrics

3.1. Not Computing Calibration Across All Pre
dictions

Expected Calibration Error was crafted to mirror re-

liability diagrams, which are structured around binary

classification such as rain vs not rain (3). A consequence

is that the error metric is reductive in a multi-class set-

ting. In particular, ECE is computed using only the pre-

dicted class’s probability, which implies the metric does

not assess how accurate a model is with respect to the

K − 1 other class probabilities. We examine increas-

ing the prevalence of those predictions via label noise,

and find that ECE becomes a worse approximation of

the calibration error (Figure 1).

3.2. Fixed Calibration Ranges

One major weakness of evenly spaced binning met-

rics is caused by the dispersion of data across ranges.

In computing ECE, there is often a large leftward skew

in the output probabilities, with the left end of the re-

gion being sparsely populated and the rightward end be-

ing densely populated. (That is, network predictions are

typically very confident.) This causes only a few bins to

Figure 1. As label noise increases, ECE is outperformed by

ACE and TACE. This shows that ECE becomes a worse ap-

proximation of true calibration error as class predictions be-

yond the predicted one matter more. (The x = 0 extreme has

a true data distribution with deterministic y; x → ∞ extreme

has a true data distribution with uniform y.)

contribute the most to ECE—typically one or two as bin

sizes are 10-20 in practice (5).

More broadly, sharpness, which is the desire for mod-

els to always predict with high confidence, i.e., predicted

probabilities concentrate to 0 or 1, is a fundamental

property (4). Because of the above behavior, ECE con-

flates calibration and sharpness when a model is highly

accurate.

3.3. BiasVariance Tradeoff

Selecting the number of bins has a bias-variance

tradeoff as it determines how many data points fall into

each bin and therefore the quality of the estimate of cal-

ibration from that bin’s range. In particular, a larger

number of bins causes more granular measures of cal-

ibration error (low bias) but also a high variance of each

bin’s measurement as bins become sparsely populated.

This tradeoff compounds particularly with the problem

of fixed calibration ranges, as certain bins have many

more data points than others.

3.4. Pathologies in Static Binning Schemes

Metrics that depend on static binning schemes like

ECE suffer from issues where you can get near 0 cal-

ibration error due to positive and negative predictions

overlapping in the same bin. For example, assuming the

dataset is 45% positive we could simply output a predic-

tion in the range of (0.41, 0.43) for the negative exam-

ples and (0.47, 0.49) for the positive examples to create

a set of predictions that has 1.0 AUC, 0 ECE and yet be

uncalibrated.
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4. New Calibration Metrics

4.1. Multiclass & Static Calibration Error

We first introduce Static Calibration Error (SCE),

which is a simple extension of Expected Calibration Er-

ror to every probability in the multiclass setting. SCE

bins predictions separately for each class probability,

computes the calibration error within the bin, and av-

erages across bins:

SCE =
1

K

K∑

k=1

B∑

b=1

nbk

N
|acc(b, k)− conf(b, k)| .

Here, acc(b, k) and conf(b, k) are the accuracy and con-

fidence of bin b for class label k, respectively; nbk is the

number of predictions in bin b for class label k; and N
is the total number of data points.

4.2. Adaptivity & Adaptive Calibration Error

Adaptive calibration ranges are motivated by the

bias-variance tradeoff in the choice of ranges, suggest-

ing that in order to get the best estimate of the over-

all calibration error the metric should focus on the re-

gions where the predictions are made (and focus less on

regions with few predictions). This leads us to intro-

duce Adaptive Calibration Error (ACE). uses an adap-

tive scheme which spaces the bin intervals so that each

contains an equal number of predictions.

In detail, ACE takes as input the predictions P (usu-

ally out of a softmax), correct labels, and a number of

ranges R.

ACE =
1

KR

K∑

k=1

R∑

r=1

|acc(r, k)− conf(r, k)| .

Here, acc(r, k) and conf(r, k) are the accuracy and con-

fidence of adaptive calibration range r for class label k,

respectively; and N is the total number of data points.

Calibration range r defined by the ⌊N/R⌋th index of the

sorted and thresholded predictions.

4.3. Thresholding & Thresholded Adaptive Cal
ibration Error

One initial challenge is that the vast majority of soft-

max predictions become infinitesimal (Figure 2). These

tiny predictions can wash out the calibration score, espe-

cially in the case where there are many classes, where a

large proportion of them model’s predictions correspond

to an incorrect class. One response is to only evaluate on

values above a threshold ǫ.
These predictions overlap with the predictions evalu-

ated by ECE (all maximum values per datapoint), lead-

ing them to have similar reactions to recalibration meth-

ods (Table 1 & 2).

Figure 2. Top Left: Lower bounds of calibrations ranges over

the course of training for adaptive calibration error on Fashion-

MNIST, focusing almost entirely on small ranges and motivat-

ing thresholding. Top Right: On the MNIST training set with

thresholding, so few values are small that the bottom of the

lowest range often spikes to .99 and higher due to every data-

point being fit. Bottom Left: ACE on Fashion-MNIST valida-

tion with 100 calibration ranges. Bottom Right: Thresholded

adaptive calibration with 50 calibration ranges over the course

of training on Fashion-MNIST’s validation set.

Method ECE TACE SCE ACE

Uncalibrated 19.64% 10.03% 0.41% 0.13%

Temp. Scaling 2.16% 0.52% 0.06% 0.06%

Vector Scaling 2.27% 0.61% 0.04% 0.01%

Matrix Scaling 12.11% 3.98% 0.26% 0.26%

Isotonic Regr. 17.85% 2.83% 0.35% 0.12%

Table 1. ECE, TACE, SCE, and ACE (with 15 bins) on a

ResNet-110 applied to CIFAR-100 before calibration, and af-

ter the application of post-processing methods. The best re-

calibration method depends on the metric, which motivates its

study.

Method ECE TACE SCE ACE

Uncalibrated 6.63% 2.51% 0.02% 0.015%

Temp. Scaling 5.42% 2.64% 0.01% 0.001%

Vector Scaling 1.44% 1.25% 0.002% 0.004%

Matrix Scaling 5.06% 1.98% 0.01% 0.001%

Isotonic Regr. 3.474% 1.862% 0.01% 0.000%

Table 2. ECE, TACE, SCE, and ACE (with 15 bins) on a

ResNet-50 applied to ImageNet before calibration, and after

the application of various extensions to Platt scaling and Iso-

tonic regression. These percentages across metrics are not di-

rectly comparable.
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