
Supplementary Materials
Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency

1. Overview
We provide additional implementation details, experi-

ment results and visualizations that are not included in the
main paper due to space constraint.

• Section 2. We describe the implementation details and
the experimental results of MLC-Net with 3DSSD [10]
used as the base model.

• Section 3. We provide the implementation details of
our MLC-Net (PointRCNN [6] as the base model) and
other baselines that are discussed in the main paper.

• Section 4. Additional experimental results.

• Section 5. More qualitative visualization results.

2. Implementation based on 3DSSD
We demonstrate that our proposed method is detector-

agnostic by adapting MLC-Net to one-stage detector
3DSSD.

2.1. MLC-Net on 3DSSD

Being a one-stage detector, 3DSSD differs from two-
stage detectors that it does not generate region proposals.
Instead, as shown in Figure 1, 3DSSD first employs a mod-
ified PointNet++ [4] model to extract point cloud features
and downsample the points. A candidate generation layer is
then applied to predict candidate shifts R which are the off-
sets of object locations relative to the downsampled points.
The corrected points are treated as candidate points and can-
didate grouping is performed to generate instance-level fea-
tures, and the final predictions S are predicted by the pre-
diction head. Please refer to [10] for more details.

Despite that 3DSSD does not have the region proposal
stage as PointRCNN, we highlight that MLC-Net is highly
compatible as long as there are point-based operations and
final instance predictions. Catering to the model architec-
ture, we compute the consistency loss based on the differ-
ence between the student and teacher predictions of R and
S. For candidate shifts R, we establish the point correspon-
dences by passing the sampling index of the teacher model

to the student model. As a result, both models sample the
same points and the one-to-one matching of points is estab-
lished. Similar to our implementation based on PointRCNN
where region proposals of the teacher model is used for fea-
ture pooling at the student model, we copy the candidate
points from the teacher to the student model for candidate
grouping to obtain instance-level features. This operation
guarantees the correspondences of final predictions S. The
rest of the operations are similar to that of our method in-
troduced in the main paper.
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Figure 1: Architecture of MLC-Net with 3DSSD as the base
model. The consistency loss is computed based on the candidates
shifts R and the final predictions S. Candidate points generated by
the teacher model is passed to the student model to establish cor-
respondence between student prediction Ŝt and teacher prediction
St.

2.2. Experiments

We evaluate MLC-Net implemented with 3DSSD on
KITTI [2] and Waymo [7] datasets. For KITTI to Waymo
transfer, we pretrain the model on KITTI dataset for 80
epochs and finetune with our proposed method for 20
epochs. For Waymo to KITTI transfer, we pretrain the
model on Waymo dataset for 40 epochs and finetune with
MLC-Net for 5 epochs. Note that all the source domain ex-
amples are used once in each training epoch with the target
domain data randomly sampled or resampled to match the
number. The number of epochs for the Waymo to KITTI



Table 1: Performance comparison on Waymo validation dataset
for transfer from KITTI to Waymo with 3DSSD as the base model.

KITTI → Waymo
Methods AP/L1 APH/L1 AP/L2 APH/L2

Direct Transfer 3.29 3.26 2.78 2.75
Wide-Range Aug 16.67 16.48 14.73 14.56

OT [9] 24.56 24.23 22.70 22.39
SN [9] 25.95 25.61 24.00 23.67
Ours 29.87 29.27 26.80 26.27

Table 2: Performance comparison on KITTI validation dataset for
transfer from Waymo to KITTI with 3DSSD as the base model.

Waymo → KITTI
Methods Easy Moderate Hard

Direct Transfer 6.31 6.41 6.25
Wide-Range Aug 37.83 35.34 34.05

OT [9] 45.42 40.50 41.04
SN [9] 47.81 45.92 46.46
Ours 56.86 48.74 48.32

transfer task is lower because the Waymo dataset has a sub-
stantial larger number of samples as compared to KITTI.
During finetuning, we use the ADAM [3] optimizer with a
learning rate of 0.001. The batch size is set to 32.

Table 1 and Table 2 report the performance comparison
for KITTI to Waymo and Waymo to KITTI transfer tasks,
respectively. It can be seen that MLC-Net consistently
outperforms the Statistical Normalization (SN) method for
both tasks. It is interesting to observe that the cross-domain
detection performance of 3DSSD is lower than PointRCNN
on these tasks, while 3DSSD has stronger in-domain per-
formance as reported in [10]. This could be attributed to
the one-stage design of 3DSSD that no bounding box re-
finement is performed, which makes it less robust to scale
variations.

3. Implementation Details
In this section, we provide implementation details of

MLC-Net with PointRCNN as the base model as well as
other baselines used in comparison.

3.1. MLC-Net on PointRCNN

For our PointRCNN-based implementation of MLC-Net
discussed in the main paper, we build our method on the of-
ficial implementation [8]. For all the experiments, we first
pretrain the base model with source data and load the stu-
dent and teacher models with the same pretrained weights
as initialization. For the pretraining, the default configura-
tions provided in [8] are used. We then train the models with
our proposed method with ADAM optimizer and a learning
rate of 0.0001. A batch size of 32 is used. When KITTI is
the source domain, we train the MLC-Net for 20 epochs and
set m as 0.99 and α as 0.05. When transferring to KITTI,
we conduct training for 5 epochs set m and α as 0.999 and

Table 3: Ablation study of random data augmentation. Both in-
put and RoI augmentations force the model to be more adaptive to
scale variations, and are found to be useful. They are also comple-
mentary to each other: applying both achieves the best result.

Input Aug RoI Aug AP/L1 APH/L1 AP/L2 APH/L2
34.34 33.89 30.86 30.45

✓ 36.23 35.81 32.57 32.19
✓ 35.86 35.44 32.22 31.85

✓ ✓ 38.21 37.74 34.46 34.04

0.001, respectively. For all the experiments, the source do-
main random scaling augmentation range is set to [0.7, 1.3],
while the target domain input augmentation h and RoI aug-
mentation ξ both use a range of [0.9, 1.1]. The probability
threshold ε is set to 0.99 and the loss weight coefficient λ is
set to 0.1. We follow [9] and conduct all the evaluations on
the car category. We implement our method using Pytorch
and run the experiments with 8 NVIDIA V100 GPUs.

3.2. Other Baselines

For the comparing methods in Section 4.2 of the main
paper, Direct Transfer uses a default random scaling input
augmentation range of [0.95, 1.05], while Wide-Range Aug
refers to a wide random scaling input augmentation range of
[0.7, 1.3], which is the same as the setting for MLC-Net. To
adapt DA-Faster [1] to PointRCNN, we apply two domain
discriminators to align the feature representations. One of
the discriminators is applied to the global features obtained
from the PointNet++ [4] backbone, while the other discrim-
inator is applied to the instance-level features obtained from
point cloud region pooling.

4. Additional Experiment Results
Effectiveness of Augmentations. Moreover, we evaluate
the significance of input augmentation h and RoI augmen-
tation ξ in Table 3. The use of augmentations consistently
improve the performance of the model as random perturba-
tions force the network to adapt to a wide range of distribu-
tions. We highlight that data augmentation is able to further
boost the performance of MLC-Net, which already outper-
forms all baselines and state-of-the-art methods without any
augmentation.
Additional Comparison with SF-UDA3D [5]. As intro-
duced in the related works, SF-UDA3D proposes to address
the 3D domain adaptive detection problem by leveraging
the temporal coherence of target predictions. Specifically,
the model trained on the source domain is used to gen-
erate predictions given target domain inputs of different
scales. The best scale is selected by comparing the pre-
diction consistency over a number of consecutive frames.
Subsequently, target predictions of the best scale are used
to finetune the pretrained model. SF-UDA3D requires con-
secutive point cloud frames as the input, which is not di-



Table 4: Comparision with SF-UDA3D on nuScenes → KITTI
transfer on the base model of PointRCNN. ∗ indicates the results
are reprinted from the original paper. Our MLC-Net outperforms
SF-UDA3D without any requirement for temporal information.

Methods Require Sequence Easy Moderate Hard
Direct Transfer 49.1 39.6 35.5
SF-UDA3D [5]∗ ✓ 68.8 49.8 45.0

Ours 71.3 55.4 49.0

rectly comparable to our proposed method which only re-
quires single-frame input. Nevertheless, we compare the
performance on the nuScenes → KITTI transfer task where
the same evaluation metrics are used for both methods with
the same PointRCNN base model. Table 4 shows that our
proposed MLC-Net outputs SF-UDA3D without leveraging
any temporal information.

5. Qualitative Results
As shown in Figure 2 and Figure 3 ,we provide addi-

tional visualization of cross-domain detection results of dif-
ferent methods on multiple transfer tasks. It can be observed
that directly applying a model trained on the source do-
main (Direct Transfer) suffers from significantly degraded
performance due to geometric mismatches. While all the
domain adaptation approaches demonstrate effectiveness in
correcting the scale, Output Transform often under-corrects
or over-corrects the predictions and cause inaccurate local-
ization. This can be attributed to the global offset applied to
all the bounding boxes, whereas individual predictions re-
quire different corrections. MLC-Net is able to mitigate the
geometric mismatches effectively on various transfer tasks,
which demonstrates the domain adaption capability of our
proposed method.

References
[1] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and

Luc Van Gool. Domain adaptive faster r-cnn for object de-
tection in the wild. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3339–3348,
2018.

[2] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[4] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017.
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Figure 2: Qualitative results on Waymo validation dataset for KITTI to Waymo transfer.
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Figure 3: Qualitative results on KITTI validation dataset for Waymo to KITTI transfer.


