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1. Implementation Details of DualStyleGAN

1.1. Dataset and Model

Dataset. Cartoon dataset [16] has 317 images, which is provided at https://github.com/justinpinkney/
toonify without claiming licenses. We use 199 images from WebCaricature [7, 8] to build the Caricature dataset. Figure 1
gives an overview of the Caricature dataset. WebCaricature provides the copyright “The dataset is released for research
and educational purposes. We hold no liability for any undesirable consequences of using the dataset. All rights of the
WebCaricature Dataset are reserved. Any person or organization is not permitted to distribute, redistribute, publish, copy
or disseminate this dataset.” We use 174 images from Danbooru Portraits [1] to build the Anime dataset. Figure 2 gives an
overview of the Anime dataset. We follow the FFHQ [11] to align caricature and anime faces based on facial landmarks.
The landmarks of caricature faces are included in WebCaricature. The landmarks of anime faces are manually labelled by
us. Danbooru Portraits are provided at https://www.gwern.net/Crops#danbooru2019-portraits without
claiming licenses. CelebA-HQ [10] is under CC BY-NC 4.0 License. FFHQ [11] is made available under CC BY-NC-SA 4.0
License by NVIDIA Corporation.

Figure 1. An overview of Caricature dataset.

Model. We build our model based on the PyTorch version of StyleGAN (https://github.com/rosinality/
stylegan2-pytorch) under MIT License. The StyleGAN Encoder of pSp [17], GNR [3] and U-GAT-IT [12] are un-
der MIT License. StarGAN2 [2] is under CC BY-NC 4.0 License. UI2I-style [14] is under CC BY-NC-SA 4.0 License.
Toonify [16] is provided at https://github.com/justinpinkney/toonify without claiming licenses. Few-
Shot Adaptation (FS-Ada) [15] is under Adobe Research License. The sampling network GLANN [5] is under BSD 3-Clause
License.

1.2. Network Architecture

There are 7 ModRes blocks in the extrinsic style path, corresponding to one 4 × 4, two 8 × 8, two 16 × 16 and two
32 × 32 convolution layers in StyleGAN. Each ModRes has a ResBlock and an AdaIN block. Each ResBlock has two
convolution layers with 3 × 3 kernels. The dimension of the style code of AdaIN is the same as the intermediate style code
w of StyleGAN, i.e., 512. The structure transfer block Ts in the extrinsic style path is made up of two linear layers. There
are 11 color transform block Tc in the extrinsic style path, corresponding to two 64× 64, two 128× 128, two 256× 256, two
512× 512, two 1024× 1024 convolution layers and one 1024× 1024 ToRGB layer in StyleGAN. Tc is made up of a linear
layer.
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Figure 2. An overview of Anime dataset.

1.3. Network Training

Destylization – Stage II uses one NVIDIA Tesla V100 GPU, and optimizes the latent code for 300 iterations, which
processes about 45 images per hour.

Progressive fine-tuning – Stage II uses one NVIDIA Tesla V100 GPU and a batch size of 4 per GPU with λadv =
0.1, λperc = 0.5. To calculate λperc, we use the conv1 1, conv2 1 and conv3 1 layers of the VGG19 [18] with equal weights
of 1. We train on l = 7, 6, 5 for 300, 300, 3000 iterations, respectively, Stage II takes about 1.8 hour. Note that once trained,
the pre-trained model can be applied to any style dataset.

Progressive fine-tuning – Stage III uses eight NVIDIA Tesla V100 GPUs and a batch size of 4 per GPU with λadv =
1, λperc = 1, λCX = 0.25, λFM = 0.25. To calculate λperc, we use the conv2 1 and conv3 1 layers of the VGG19 [18] weighted
by 0.5 and 1, respectively We set (λID, λreg) to (1, 0.015), (4, 0.005), (1, 0.02) and trains for 1400, 1000, 2100 iterations on
cartoon, caricature and anime, respectively. Training takes about 0.75 hour on average.

Post-processing. Latent optimization and training sampling network use one GPU. Post-processing optimizes the latent
for 100 iterations, taking about 0.46 hour per 100 artistic portrait images. We adopt the Adam optimizer. The first 7 rows of
z+e use a small learning rate of 0.005, 0.005, 0.0005 to prevent violent structure changes for cartoon, caricature and anime,
respectively. The last 11 rows of z+e use a learning rate of 0.1, 0.01, 0.005 for color refinement for cartoon, caricature and
anime, respectively. Training two sampling networks takes about 0.13 hour.
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1.4. Experiment Details of Simulating Fine-Tuning Behavior

As analyzed in Sec. 3.2 of the paper, StyleGANs before and after fine-tuning have shared latent spaces [14] and closely-
related convolution features. Therefore, the difference of these convolution features is also closely-related to the original
convolution features. It is possible to keep all other submodules fixed but only learn changes over the convolution features to
simulate the changes of the convolution weight matrices in fine-tuning, which naturally corresponding to a residual path. To
simulate the unconditional fine-tuning over StyleGAN, we follow three principles to design the residual path:
• Principle I: The residual path has few impact on the feature at the beginning of fine-tuning in order to make the pre-

trained generative space unaltered.
• Principle II: The residual path is conditioned by the input convolution features from StyleGAN, considering the residual

features should be closely-related to the original convolution features.
• Principle III: The residual path is not conditioned by the external style images, since in this experiment we would like

to only simulate the unconditional fine-tuning over StyleGAN rather than learning a style transfer task.
Based on the above principles, we compare three modules for the building of the residual path: channel-wise AdaIN [6],
spatial-wise Diagonal Attention (DAT) [13] and element-wise ResBlock [4], with the network architectures:
• ResBlock: Standard residual blocks with two 3 × 3 convolution layers. The convolution weight matrices are set to

values close to 0 to meet Principle I.
• AdaIN: To meet Principles II and III, we extract the channel-wise style code from the input convolution feature by

global average pooling and a linear layer rather than using the external style code. The style code then goes through an
affine transform block A for adaptive instance normalization. To meet Principle I, the modulated feature is multiplied
with a learnable weight λ, which is set to a small value of 0.01 initially, before added to the input feature.

• DAT: To meet Principles II and III, we extract the spatial-wise style code from the input convolution feature via an
adaptive pooling layer and an 1 × 1 convolution layer rather than using the external style code. The one-channel style
code goes through a linear layer and a sigmoid layer to obtain the attention map as the original DAT. The attention map
is multiplied with the input feature as well as the learnable weight λ, which is set to a small value of 0.01 initially, before
added to the input feature.

Figure 3 intuitively summarizes the above three network architectures to simulate fine-tuning behavior of StyleGAN.
In the experiment of Sec. 3.2 of the paper, we finetune StyleGAN for 900 iterations on Cartoon dataset. The resulting

StyleGAN serves as a ground truth model. Then, we keep the original StyleGAN fixed, and only train three kinds of residual
paths for 900 iterations on Cartoon dataset. Finally, we compare the performance of the three model against the ground truth
model in cartoon face generation from the same random latent code, and find that channel-wise or spatial-wise modulations
alone are not enough to approximate the fine-tuning behavior. ResBlocks achieve the most similar results to those by the
ground truth model. Therefore, we choose residual blocks to build the residual path in the paper.
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Figure 3. Network architectures used to simulate fine-tuning behavior.
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2. Supplementary Experimental Results of DualStyleGAN
2.1. Comparison with State-of-the-Art Methods
2.1.1 Visual comparison

In addition to the examples shown in the main paper, we show more visual comparison results in Figs. 4-6.

input example Our UI2I-style StarGAN2 GNR Toonify FS-Ada U-GAT-IT

Exemplar-based style transfer Domain-level style transfer

Figure 4. Visual comparison on cartoon face style transfer.
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input example Our UI2I-style StarGAN2 GNR Toonify FS-Ada U-GAT-IT

Exemplar-based style transfer Domain-level style transfer

Figure 5. Visual comparison on caricature face style transfer.
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input example Our UI2I-style StarGAN2 GNR Toonify FS-Ada U-GAT-IT

Exemplar-based style transfer Domain-level style transfer

Figure 6. Visual comparison on anime face style transfer.
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2.1.2 User study

We conduct a user study to evaluate the overall style transfer performance. Users are asked to select the best style transfer
result in terms of both content preservation and style consistency with the reference style images. A total of 27 subjects
participate in this study to select the best ones from the results of four methods. A total of 810 selections on 30 groups of
results (Figs. 4-6) are tallied. Table 1 demonstrates the average user scores of each group and the whole 30 groups, where the
proposed method receives notable preference.

Table 1. User preference ratio of state-of-the-art methods. The best score in each row is marked in bold.

Style ID DualStyleGAN UI2I-style [14] StarGANv2 [2] GNR [3]

Cartoon

1 0.96 0.04 0.00 0.00
2 1.00 0.00 0.00 0.00
3 0.93 0.00 0.07 0.00
4 0.96 0.00 0.04 0.00
5 1.00 0.00 0.00 0.00
6 1.00 0.00 0.00 0.00
7 0.89 0.11 0.00 0.00
8 0.96 0.04 0.00 0.00
9 0.85 0.04 0.04 0.07

10 0.74 0.26 0.00 0.00

Caricature

1 0.78 0.19 0.00 0.04
2 0.93 0.00 0.00 0.07
3 0.74 0.04 0.00 0.22
4 0.52 0.48 0.00 0.00
5 0.96 0.00 0.00 0.04
6 0.78 0.19 0.00 0.04
7 0.89 0.07 0.00 0.04
8 0.63 0.33 0.00 0.04
9 0.81 0.11 0.00 0.07

10 0.81 0.07 0.04 0.07

Anime

1 0.70 0.07 0.22 0.00
2 0.96 0.04 0.00 0.00
3 0.67 0.26 0.00 0.07
4 0.33 0.30 0.11 0.26
5 0.89 0.07 0.00 0.04
6 0.74 0.22 0.04 0.00
7 0.81 0.19 0.00 0.00
8 0.85 0.15 0.00 0.00
9 0.85 0.15 0.00 0.00

10 1.00 0.00 0.00 0.00

Average 0.83 0.11 0.02 0.04
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2.2. Comparison with StyleCariGAN

The officially release model of StyleCariGAN [9] is trained on 6K images to produce 256 × 256 images. The reason
might be it is difficult to train cycle translation with limited high-resolution images. As for style control, StyleCariGAN uses
style mixing for exemplar-based style control, which is limited to color control like UI2I-style [14]. The cycle translation
of StyleCariGAN is not conditioned on example. Thus, it learns an overall structure transfer rather than exemplar-based
structure transfer. In [9], StyleCariGAN shows exemplar-based structure transfer results by mixing the structure style at the
low-resolution layers, which is however at the cost of lost identity and artifacts.

In the main paper, we compare with StyleCariGAN, where the performance of StyleCariGAN degrades when using
style codes from example images. The reason might be that the style code is optimized in W+ space as in [9] and is
out-of-distribution, while the style codes in official style palette are directly drawn from the standard latent distribution.
Figure 7 presents more visual comparison results on the content images from https://github.com/wonjongg/
StyleCariGAN. For StyleCariGAN, we only use style codes from official style palette to prevent degradation. For D-
ualStyleGAN, we use the style codes from our Caricature dataset. It can be seen that both methods render diverse and
plausible textures and colors. Our method surpasses StyleCariGAN in transferring diverse structure styles.

(b) DualStyleGAN(a) StyleCariGAN

Input
content

Figure 7. Random anime faces generated by DualStyleGAN
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2.3. Arbitrary Artistic Portrait Generation

In Figs. 8–10, we show artistic portraits generated by DualStyleGAN from random intrinsic and extrinsic style codes. The
generative space of DualStyleGAN is of high diversity and high quality.

Figure 8. Random cartoon portraits generated by DualStyleGAN.
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Figure 9. Random caricature portraits generated by DualStyleGAN.
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Figure 10. Random anime portraits generated by DualStyleGAN
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2.4. Performance on Other Styles
2.4.1 Performance on Datasets With About One Hundred Images
In Fig. 11, we show additional style transfer results in styles of Pixar. The training on Pixar dataset of 122 images takes 1000
iterations with (λadv, λperc, λCX, λFM, λID, λreg) = (1, 1, 0.25, 0.25, 1, 0.015), and does not apply the post-processing of latent
optimization to refine the color.

input example Our input example Our

Figure 11. Performance on Pixar styles.
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In Fig. 12, we show additional style transfer results in styles of Comic. The training on Comic dataset of 101 images takes
1000 iterations with (λadv, λperc, λCX, λFM, λID, λreg) = (1, 1, 0.25, 0.25, 1, 0.015), and does not apply the post-processing of
latent optimization to refine the color.

input example Our input example Our

Figure 12. Performance on Comic styles.
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In Fig. 12, we show additional style transfer results in styles of Slam Dunk. The training on Slam Dunk dataset of
120 images takes 1500 iterations with (λadv, λperc, λCX, λFM, λID, λreg) = (1, 1, 0.25, 0.25, 4, 0.02), and does not apply the
post-processing of latent optimization to refine the color.

input example Our input example Our

Figure 13. Performance on Slam Dunk styles.
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2.4.2 Effect of the Regularization Term on Extremely Limited Data
We investigate the potential of our method in handling extremely limited data. We collected sixteen cartoon portrait images
as shown in the top of Fig. 14 and use them with data augmentation of horizontal flip to train DualStyleGAN.

input style image input face images

DualStyleGAN

(λreg=0.02)

DualStyleGAN

(λreg=0.08)

input style image input face images

DualStyleGAN

(λreg=0.02)

DualStyleGAN

(λreg=0.08)

training data

(16 images)

Figure 14. Overview of the sixteen-image cartoon dataset and performance on this dataset with different λreg.
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The extremely limited data makes it very easy to fall into mode collapse. We tested on several hyper-parameter configu-
rations, and found (λadv, λperc, λCX, λFM, λID, λreg) = (1, 0.1, 0.05, 0.05, 4, 0.08) made the fine-tuning relatively more stable,
and prevented DualStyleGAN from just memorizing these sixteen cartoon portrait images. The final results are shown in
Fig. 14, where we set w = [4 ∗ 1, 3 ∗ 0.5, 11 ∗ 1]. We also compare with the results with λreg = 0.02. It can be seen that when
using a small λreg = 0.02, DualStyleGAN ignores the input face image and just memorizes the training images. By setting
λreg = 0.08, the regularization term forces our model to use as few resources to shift the generative space as possible, so that
it successfully learns to fully utilize the pre-trained facial features to help transfer and yields reasonable style transfer results.
However, the data size still has a large impact on the performance. Compared to datasets with hundreds of images, there are
many artifacts when using extremely limited data.

2.5. Effect of Batch Size

We have also tried fine-tuning on a singe GPU with a batch size of 4. We find training with one GPU is less sta-
ble than that with eight GPUs, and requires about twice or triple the iterations (3500, 3000, 4500 for cartoon, carica-
ture and anime, respectively). We achieve good results with (λadv, λperc, λCX, λFM, λID, λreg) =(1, 2.25, 0.25, 0.25, 1, 0.02),
(1, 1.0, 0.25, 0.25, 2, 0.01) and (1, 0.25, 0.25, 2.5, 1, 0.04) on cartoon, caricature and anime with one GPU, respectively.
However, as shown in Fig. 15, the results using a small batch size have more artifacts than that using a large batch size.
Therefore, a large batch size is recommended.

(a) input (b) cartoon style images (c) caricature style images (d) anime style images

DualStyleGAN

(batch size 4)

DualStyleGAN

(batch size 32)

Figure 15. Compare style transfer results of DualStyleGAN trained with a batch size of 32 and 4.
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2.6. Style Blending

In Figs. 16-18, we perform a linear interpolation to style feature, and observe smooth changes along with the latent space
from one to another.

Figure 16. Style blending on cartoon portraits. The anchor styles are marked by red boxes.
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Figure 17. Style blending on caricature portraits. The anchor styles are marked by red boxes.
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Figure 18. Style blending on anime portraits. The anchor styles are marked by red boxes.
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