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1. Architecture and Experimental Settings
Architecture. We use a simple architecture in this work for
explorational purpose. First, a convolution is used to extract
shallow features from the input image. A stack of 20 resid-
ual blocks are then used to extract deep features. A final
convolutional layer is then used to produce the clean image.
We adopt BasicVSR [1] as the VSR network. We reduce
the number of residual blocks from 60 to 40 to maintain
comparable complexity to the original BasicVSR.

Loss Function. For the output fidelity loss Lpix and image
cleaining loss Lclean, we use Charbonnier loss [3] since it
better handles outliers and improves the performance over
the conventional ℓ2 loss [7]. In addition, we use perceptual
loss [6] Lper and adversarial loss [4] Ladv to achieve better
visual quality.

In the first stage, we pretrain the generator (i.e., Real-
BasicVSR) with the fidelity loss and image cleaning loss:

L1st = Lpix + Lclean. (1)

We then finetune the network with also perceptual loss and
adversarial loss:

L2nd = Lpix + Lclean + λperLper + λadvLadv. (2)

In our experiments, λper=1 and λadv=5×10−2. Note that
in the second stage, the weights of the cleaning module are
kept fixed.

Training Degradations. Following Real-ESRGAN [11],
we adopt the second-order order degradation model, and
we apply random blur, resize, noise, and JPEG compres-
sion as image-based degradations. In addition, we incor-
porate video compression, which is a common technique
to reduce video size. Unlike the aforementioned degra-
dations, video compression implicitly considers the inter-
dependencies between video frames, providing us with tem-
porally and spatially varying degradations. The settings of
image-based degradations follow Real-ESRGAN [11]. For
the video compression, in each iteration, we randomly se-
lect one of the following codecs: “libx264”, “h264”, and

“mpeg4”. The bitrate is uniformly selected from the range
[104, 105]. Video compression is added right after JPEG
compression.

Qauntitative Metrics. Our quantitative metrics are com-
puted on the Y-channel. To save computational cost, we
compute the metrics on the first, middle, last frames of each
seqeuence. The details is shown in Table 1.

Table 1. Frames used in our quantitative comparison. To save
computational cost, we compute the metrics only on the frames
specified below.

Video ID Frame Numbers
030 000, 020, 040
031 000, 017, 033
032 000, 024, 048
033 000, 023, 046
others 000, 050, 099

Implementation. We implement our models with Py-
Torch and train the models using eight NVIDIA Tesla V100
GPUs. Code will be made publicly available at MMEdit-
ing [9] and https://github.com/ckkelvinchan/
RealBasicVSR.

2. Discussion of Baselines

In this work, we compare our RealBasicVSR with seven
state of the arts, including four image models: RealSR [5],
DAN [8], Real-ESRGAN [11], BSRGAN [13] and three
video models: BasicVSR++1 [2], RealVSR [12], DB-
VSR [10]. They are representative methods in image and
video super-resolution that achieve promising performance.

With specific designs in training, these methods demon-
strate significant improvements when compared to non-
blind methods. However, while these methods succeed in
removing degradations in the input images, they are infe-
rior in recovering details beyond the image itself or its local

1Trained with bicubic downsampling, as a reference.
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neighbors, due to the fact that they do not exploit long-term
information available in videos.

Despite being extensively discussed in non-blind VSR,
the use of long-term information has not been explored in
real-world VSR. In this work, we find that such long-term
information, if used with designated designs, is also useful
in real-world VSR. With the benefits of our findings and
designs, RealBasicVSR is able to restore more details than
the methods in comparison, as shown in Fig. 1 and Fig. 2.

3. Dynamic Refinement
In this section, we show additional examples demon-

strating the effects of our dynamic refinement. As shown
in Fig. 3, unpleasant artifacts remain in the outputs when
applying cleaning once, and unnatually flat outputs due to
over-cleaning are observed when our cleaning module is ap-
plied five times. In contrast, our refinement scheme au-
tomatically stops the refinement to avoid over-smoothing
while cleaning excessive artifacts, leading to improved per-
formance. More sophisticated decision processes are left as
our future work.

4. Limitation of RealBasicVSR
While RealBasicVSR shows much better capability

when compared to existing works, it does not work well
when the degradations are too extreme or too different from
the training degradations. This is a common problem in
real-world restoration, and a more thorough understanding
of the real-world degradations is needed. Further improve-
ments on the generalizability is left as our future work.
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Figure 1. Qualitative Comparison. By employing the long-term information effectively, RealBasicVSR restores more details when
compared to existing state of the arts. (Zoom-in for best view)
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Figure 2. Qualitative Comparison. By employing the long-term information effectively, RealBasicVSR restores more details when
compared to existing state of the arts. (Zoom-in for best view)
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Figure 3. Dynamic Refinement. Our dynamic refinement scheme removes remaining noises and artifacts in the first cleaning while
avoiding over-smoothing. (Zoom-in for best view)


