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Abstract

Data imbalance exists ubiquitously in real-world visual
regressions, e.g., age estimation and pose estimation, hurt-
ing the model’s generalizability and fairness. Thus, im-
balanced regression gains increasing research attention
recently. Compared to imbalanced classification, imbal-
anced regression focuses on continuous labels, which can
be boundless and high-dimensional and hence more chal-
lenging. In this work, we identify that the widely used
Mean Square Error (MSE) loss function can be ineffec-
tive in imbalanced regression. We revisit MSE from a sta-
tistical view and propose a novel loss function, Balanced
MSE, to accommodate the imbalanced training label dis-
tribution. We further design multiple implementations of
Balanced MSE to tackle different real-world scenarios, par-
ticularly including the one that requires no prior knowl-
edge about the training label distribution. Moreover, to
the best of our knowledge, Balanced MSE is the first gen-
eral solution to high-dimensional imbalanced regression in
modern context. Extensive experiments on both synthetic
and three real-world benchmarks demonstrate the effective-
ness of Balanced MSE. Code and models are available at
github.com/jiawei-ren/BalancedMSE.

1. Introduction
Visual regression, where models learn to predict continu-

ous labels, is one of the most fundamental tasks in machine
learning. However, in real-world applications, data imbal-
ance is widely encountered, hurting the model’s generaliz-
ability and fairness. For example, age estimation predicts
people’s age from their visual appearance, where age is a
continuous label. In practice, most of the training images
are from adults, while very few images are from children
and senior adults. As a result, models trained from such an
imbalanced dataset can have inferior performance on under-
represented groups [38]. Therefore, imbalanced regression
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Figure 1. Comparison between MSE and Balanced MSE. MSE
is equivalent to NLL on a prediction distribution, where the re-
gressor θ’s prediction is the distribution mean. MSE lets the re-
gressor model ptrain(y|x), which is not suitable to infer on the test
set due to a shift between the training label distribution ptrain(y)
and the balanced test label distribution pbal(y). In comparison,
Balanced MSE leverages ptrain(y) to make a statistical conversion
from pbal(y|x) to ptrain(y|x), thus allowing the regressor to model
the desired pbal(y|x) by still minimizing NLL of ptrain(y|x).

gains increasing research attention. A fresh imbalanced re-
gression benchmark [38] in the modern deep learning con-
text has been curated recently as well. Compared with im-
balanced and long-tailed classification [4,12,24] that studies
categorical labels, imbalanced regression focuses on contin-
uous labels, which can be boundless, high-dimensional, and
hence more challenging.

Unlike imbalanced classification that has been widely
discussed [15, 20, 35, 39], imbalanced regression is under-
explored. Previous works [1, 33] focus on synthesiz-
ing samples for rare labels, which have limited feasibil-
ity in modern deep learning where inputs are always high-
dimensional. Recent research [31, 38] focuses on loss
reweighting. Reweighting assigns larger loss weights to
rare samples and smaller loss weights to frequent samples.
[31, 38] estimates the training label distributions using ker-
nel density estimation (KDE) and reweight losses accord-
ingly. However, prior works [5, 36] show that reweighting
has limited effectiveness on imbalanced classification. In a
following case study, we validate this finding in imbalanced
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Figure 2. Comparison of Balanced MSE and existing methods on a 1-D imbalanced linear regression synthetic benchmark. Column 1 and 3
are visualizations of regression results: points represent training data, x is input and y is label; (x, y) is noisily generated by an oracle linear
relation (in blue) and is artificially label-imbalanced; other lines represent different regressors, the closer to the oracle the better. Column 2
and 4 are visualizations of label distributions: blue shaded histogram represents the training label distribution ptrain(y), it gets more skewed
from top to bottom; purple histogram represents the test label distribution, which is balanced; other histograms are the marginal label
distributions predicted by different regressors on the test set, the closer to the test distribution the better. Although reweighting (in green) is
closer to the oracle (in blue) compared with least square (in yellow), it suffers a larger error when ptrain(y) gets more skewed. Our method
(in red), Balanced MSE, makes the estimation closest to the oracle and has a uniform marginal label distribution on the test set.

regression as well. To sum up, imbalanced regression is still
in an early stage and lacks an effective approach.

To mitigate the gap, we present a statistically princi-
pled loss function, Balanced MSE, for imbalanced regres-
sion. We revisit Mean Square Error (MSE), the standard
loss function in regression, from a statistical view. We
identify that MSE carries the label imbalance into predic-
tions, which leads to inferior performance on rare labels.
We propose Balanced MSE to restore a balanced prediction
by leveraging the training label distribution prior to make a
statistical conversion. Moreover, we provide various imple-
mentation options for Balanced MSE, including the one that
estimates the training label distribution online and requires
no additional prior knowledge, making Balanced MSE ap-
plicable to different real-world scenarios.

Balanced MSE shows clear advantages over existing
methods both theoretically and practically. As a motivat-
ing example, we compare Balanced MSE with reweighting
using an 1-D linear regression synthetic benchmark shown
in Fig. 2. Regressors trained with Balanced MSE show a
consistent performance that is invariant to the skewness of
the training label distribution. On the contrary, reweighting
suffers from a significantly larger prediction error when the

training label distribution gets more skewed.
We further demonstrate Balanced MSE’s empirical suc-

cess on existing real-world benchmarks [38], including
age estimation and depth estimation. Note that exist-
ing imbalanced regression benchmarks only consider uni-
dimensional label space, e.g., age and depth. However, la-
bels sometimes have more than one dimension in real-world
applications. To close the gap, we propose a new multi-
dimensional imbalanced regression benchmark on Human
Mesh Recovery (HMR) [18], which is an important task
that estimates 3D human meshes from monocular images.
We extend the standard metrics of HMR (e.g., mean per
joint position error (MPJPE)) to balanced metrics so that
we evaluate the regression performance on human meshes
with different rarity fairly. We call the new imbalanced re-
gression benchmark Imbalanced HMR (IHMR). We show
that Balanced MSE delivers strong empirical results on both
uni- and multi-dimensional benchmarks. To the best of our
knowledge, Balanced MSE is the first general solution to
high-dimensional imbalanced regression in modern context.

In summary, our contributions are three-fold: 1) We
identify the ineffectiveness of MSE in imbalanced regres-
sion and propose a statistically principled loss function,
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Balanced MSE, that leverages the training label distribu-
tion prior to restore a balanced prediction. 2) We devise
various implementation options of Balanced MSE to tackle
different real-world scenarios, including the one that esti-
mates the training label distribution online and requires no
prior knowledge beforehand. 3) We propose a new multi-
dimensional benchmark IHMR, and show that Balanced
MSE achieves state-of-the-art performance on both uni- and
multi-dimensional real-world benchmarks.

2. Related Works

Imbalanced & Long-Tailed Classification. Many tech-
niques have been explored for imbalanced & long-tailed
classification, for example, resampling [7, 9, 13, 21] and
reweighting [6, 10, 16, 17]. Here, we focus on the logit
adjustment techniques, which are the most relevant to this
work. Recent works [27, 29, 32] show that modifying the
logits in the mapping function, e.g., Softmax or Sigmoid,
by an offset proportional to log ptrain(y) gives the Bayes-
optimal estimation of the pbal(y|x). The logit adjustment
techniques can work as either a train-time loss function or
a test-time adjustment. [34] further develops an online ver-
sion that accumulates the statistics of label distribution dur-
ing training instead of requiring statistics of all training la-
bels ahead of time.
Imbalanced Regression. Imbalanced regression is rela-
tively under-explored. Earlier works [1, 33] focus on re-
sampling and synthesizing new samples for rare labels. Fur-
ther work [2] ensembles regressors trained under different
resampling policies. Extending their method towards high-
dimensional observations like images is non-trivial. Re-
cent research [31, 38] proposes to estimate the empirical
training distribution with KDE and then apply the stan-
dard reweighting technique. [38] proposes a feature level
smoothing as well, which is complementary to this work.

3. Methodology

3.1. Problem Setting

We study a regression task. We consider input x ∈ X
and label y ∈ Y = Rd. Different from [38] which only
discusses uni-dimensional (d = 1) regressions, we discuss
multi-dimensional (d > 1) regressions in this paper as well.

Normally, both the training set and test set are drawn
from the same joint distribution. However, when the label
distribution is highly skewed, a model may learn a trivial
solution by always predicting the frequent labels. The trivial
model will still have a low error rate on the test set [27]. To
address the issue, either a balanced evaluation metric or a
balanced test set is employed to fairly evaluate a model’s
performance on samples with different rarities. Moreover,
it can be shown that using a balanced metric on an arbitrary

test set is equivalent to using an overall metric on a balanced
test set that hypothetically exists [3].

Therefore, imbalanced regression assumes that the train-
ing set and test set are drawn from different joint distri-
butions, ptrain(x,y) and pbal(x,y) respectively, where the
training set’s label distribution ptrain(y) is skewed and the
balanced test set’s label distribution pbal(y) is uniform [38].
The label-conditional probability p(x|y) is assumed to be
the same in both training and testing. Instead of learn-
ing ptrain(y|x), imbalanced regression’s goal is to estimate
pbal(y|x) to better perform on the balanced test set. A simi-
lar setting is generally adopted in imbalanced classification
literature [6, 15, 27, 29] as well.

3.2. Revisiting Mean Square Error

In this section, we revisit Mean Square Error (MSE)
from a statistical view. MSE loss is the most commonly
used loss function in regression. For a predicted label ypred
and a target label y, the MSE loss can be written as

MSE(y,ypred) = ∥y − ypred∥22 , (3.1)

where ∥.∥2 denotes the L2 norm. It is well known that min-
imizing MSE can be equivalent to maximum likelihood es-
timation in regression [28]. The prediction of a regressor
ypred can be considered as the mean of a noisy prediction
distribution, which is modeled as a Gaussian distribution in
the classic probabilistic interpretation [26]:

p(y|x;θ) = N (y;ypred, σ
2
noiseI), (3.2)

where θ is the regressor’s parameter, ypred is the regres-
sor’s prediction and σnoise is the scale of an i.i.d. error term
ϵ ∼ N (0, σ2

noiseI). It is easy to show that MSE equals to
the Negative Log Likelihood (NLL) loss of the prediction
distribution p(y|x;θ) [28]. Therefore, a regressor trained
using MSE in fact learns to model ptrain(y|x).

However, as mentioned in the problem setting, we are in-
terested in estimating pbal(y|x) instead of ptrain(y|x). Due
to a shift from the long-tailed training distribution ptrain(y)
to the balanced test distribution pbal(y), there is a mis-
match between ptrain(y|x) and pbal(y|x). By Bayes’ Rule,
we have ptrain(y|x) ∝ p(x|y) · ptrain(y) and pbal(y|x) ∝
p(x|y) · pbal(y). By change of variables, we have:

ptrain(y|x)
pbal(y|x)

∝ ptrain(y)

pbal(y)
(3.3)

Eq. 3.3 quantifies that the ratio between ptrain(y|x) and
pbal(y|x) is proportional to ptrain(y), which is lower when a
label rarely appears in the training set. Therefore, a regres-
sor trained with MSE will underestimate on rare labels.

Although this mismatch is a well-known observation in
imbalanced classification [15, 27, 29, 32], we are the first to
address the mismatch in imbalanced regression. Different
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from classification tasks that model prediction distribution
explicitly by Softmax scores, regression tasks model the
prediction distribution implicitly: only the mean of the pre-
diction distribution plays a role in both training and testing.
Therefore, the probabilistic meaning of imbalanced regres-
sion has been constantly overlooked by existing research.
Our work is an initial attempt to rethink imbalanced regres-
sion in a statistical framework. We will show how the sta-
tistical insight sheds light on imbalanced regression in the
following sections.

3.3. Balanced MSE

We propose Balanced MSE to restore pbal(y|x). First,
we discuss a statistical conversion from pbal(y|x) to
ptrain(y|x) using the training label distribution ptrain(y).

Theorem 1 (Statistical Conversion) Let ptrain(x,y) be the
training distribution where ptrain(y) is imbalanced and
pbal(x,y) be the balanced test distribution where pbal(y)
is uniform. ptrain(x,y) and pbal(x,y) have the same label-
conditional distribution p(x|y). ptrain(y|x) can always be
expresed by pbal(y|x) and ptrain(y) as:

ptrain(y|x) =
pbal(y|x) · ptrain(y)∫

Y
pbal(y′|x) · ptrain(y′)dy′ . (3.4)

The proof can be found in the supplementary materials.
Theorem 1 allows us to estimate pbal(y|x) by minimizing
the NLL loss of ptrain(y|x). Specifically, we let the regres-
sor directly estimate the desired pbal(y|x), i.e.,

pbal(y|x;θ) = N (y;ypred, σ
2
noiseI) (3.5)

As illustrated in Fig. 1, in training, we first predict
pbal(y|x;θ), convert it into ptrain(y|x;θ) using Eq. 3.4 and
then compute the NLL loss to update θ; in testing, we skip
the conversion and directly output the regressor’s prediction
pbal(y|x;θ). We name the NLL loss of the converted con-
ditional probability as Balanced MSE.

Definition 3.1 (Balanced MSE) For a regressor’s predic-
tion ypred, and a training label distribution prior ptrain(y),
the Balanced MSE loss is defined as:

L = − log ptrain(y|x;θ)

= − log
pbal(y|x;θ) · ptrain(y)∫

Y
pbal(y′|x;θ) · ptrain(y′)dy′

∼= − logN (y;ypred, σ
2
noiseI)

+ log

∫
Y

N (y′;ypred, σ
2
noiseI) · ptrain(y

′)dy′,

(3.6)

where ∼= hides a constant term − log ptrain(y).

Balanced MSE has two parts: the first part is equivalent to
the standard MSE loss, and the second part is a new bal-
ancing term, where an integral needs to be computed. We

show in the supplementary materials that the new balancing
term equals a constant when the training label distribution
ptrain(y) is uniform. Therefore, the standard MSE loss can
be viewed as a special case of Balanced MSE.

Balanced MSE closes the distribution mismatch between
training and testing, thus being a statistically principled loss
function for imbalanced regression. In the following sec-
tions, we discuss 1) Balanced MSE’s connection with im-
balanced classification and 2) how to implement Balanced
MSE in practice.

3.4. Connection with Imbalanced Classification

We show that Balanced MSE has an underlying con-
nection with existing solutions in imbalanced classification.
Theorem 1 is true not only in imbalanced regression but also
in imbalanced classification. In imbalanced classification,
the label space Y is one-dimensional and discrete, the inte-
gral on Y can be written into summation, Eq. 3.4 becomes:

ptrain(y|x) =
pbal(y|x) · ptrain(y)∑

y′∈Y pbal(y′|x) · ptrain(y′)
. (3.7)

Usually, Softmax is employed to convert model outputs into
a prediction distribution in classification. When using Soft-
max to express the desired pbal(y|x), we have:

pbal(y|x;θ) =
exp(η[y])∑

y′∈Y exp(η[y′])
, (3.8)

where η[y] is the model’s output on class y. Plugging the
Softmax expression in Eq. 3.8 into Eq. 3.7, we have

ptrain(y|x;θ) =
exp(η[y]) · ptrain(y)∑

y′∈Y exp(η[y′]) · ptrain(y′)
, (3.9)

which achives the same form as the logit adjustment tech-
niques in imbalanced classification literature [15, 27, 29].
Therefore, Balanced MSE and the logit adjustment tech-
niques can be viewed as two different instantiations of The-
orem 1 on imbalanced regression and imbalanced classifi-
cation respectively. Our work provides a unified statistical
view of both imbalanced classification and regression for
the first time. We hope that the unified perspective can help
future research to further bridge the two tasks.

3.5. Implementation Options

We discuss how to implement Balanced MSE in prac-
tice. The integral in Balanced MSE (Eq. 3.6) can be diffi-
cult to compute. In the following sections, we provide both
closed-form options and numerical options to calculate the
integral. Particularly, the option Batch-based Monte-Carlo
(BMC) requires no prior knowledge of the training label
distribution and hence can be more generally deployed in
real-world applications.
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3.5.1 Closed-form Options

In this section, we aim to find a closed-form expression for
the integral

∫
Y
N (y;ypred, σ

2
noiseI) · ptrain(y)dy. The main

challenge is how to express ptrain(y) to make the integral
tractable. Here, we discuss a viable option, which is to ex-
press ptrain(y) as a Gaussian Mixture Model (GMM).
GMM-based Analytical Integration (GAI). The advan-
tage of employing GMM is the fact that the product of two
Gaussians is an unnormalized Gaussian. Concretely, let us
have ptrain(y) expressed by a Gaussian Mixture:

ptrain(y) =

K∑
i=1

ϕiN (y;µi,Σi), (3.10)

where K is the number of Gaussian components, ϕ,µ,Σ
are the weights, means and covariances of the GMM. Since
the product of two Gaussians is an unnormalized Gaussian,
we have:∫

Y

N (y;ypred, σ
2
noiseI) ·

K∑
i=1

ϕiN (y;µi,Σi)dy

=

K∑
i=1

ϕiSi

∫
Y

N (y; µ̃i, Σ̃i)dy.

(3.11)

where S, µ̃, Σ̃ are the norms, means, and covariances of
the new unnormalized Gaussian. Now, the integral is on
Gaussian distribution and can be trivially solved. We leave
the detailed derivation in the supplementary material. The
final loss form is:

L = − logN (y;ypred, σ
2
noiseI)

+ log

K∑
i=1

ϕi · N (ypred;µi,Σi + σ2
noiseI).

(3.12)

3.5.2 Numerical Options

The closed-form solution above imposes a constraint on the
modeling of ptrain(y). However, in modern deep learning
tasks, ptrain(y) could be very high-dimensional and has a
complex underlying distribution. With the constraint on
the distribution modeling, analytically expressing ptrain(y)
could be challenging. Therefore, we discuss a few numer-
ical approaches, which could be more generally applicable
to all types of label data but could bear a larger variance
in optimization. In essence, we use Monte Carlo Method
(MCM) to approximate ptrain(y):∫

Y

N (y;ypred, σ
2
noiseI) · ptrain(y)dy

= Ey∼ptrain(y)[N (y;ypred, σ
2
noiseI)]

≈ 1

N

N∑
i=1

N (y(i);ypred, σ
2
noiseI).

(3.13)

Batch-based Monte-Carlo (BMC). BMC requires no
prior knowledge on ptrain(y). It treats all labels in a train-
ing batch as random samples from ptrain(y). For labels in a
training batch By = {y(1),y(2), ...y(N)}, the loss will be:

L = − logN (y;ypred, σ
2
noiseI)

+ log

N∑
i=1

N (y(i);ypred, σ
2
noiseI).

(3.14)

Furthermore, BMC in Eq. 3.14 can be rewritten like Soft-
max with temperature:

L = − log
exp(−∥ypred − y∥2

2
/τ)∑

y′∈By
exp(−∥ypred − y′∥2

2
/τ)

, (3.15)

where τ = 2σ2
noise is a temperature coefficient.

BMC is easy to implement. Interestingly, its form
in Eq. 3.15 is equivalent to classifying within a batch,
and shows similarity to contrastive loss functions used in
self-training [8, 14]. The similarity could potentially be
connected with self-training’s effectiveness in imbalanced
learning [19, 37], which we leave for future discussion.
Bin-based Numerical Integration (BNI). Although the
”bin” based idea mainly applies to uni-dimensional label
space, it allows us to leverage recent progress on estimating
label densities using KDE [31, 38]. These prior works first
divide the label space into evenly distributed bins, then use
KDE to estimate the ptrain(y) at the bin centers. We may di-
rectly use their results to make a numerical integration. For
N bin centers {y(1),y(2), ...,y(N)}, the loss is:

L = − logN (y;ypred, σ
2
noiseI)

+ log

N∑
i=1

ptrain(y(i)) · N (y(i);ypred, σ
2
noiseI).

(3.16)

3.5.3 Finding Optimal Noise Scale

Unlike the standard MSE loss, the noise scale σnoise makes
a difference in the proposed method. Locating an optimal
noise scale is thus important. A hyper-parameter search
on σnoise will be affordable given that σnoise is defined in
R+ and bounded by the square root of train-time and test-
time MSEs. However, in this paper, instead of using hyper-
parameter search, we jointly optimize σnoise with ypred dur-
ing model training.

We observe that we can obtain near-optimal σnoise by
simply setting σnoise as a learnable parameter. A compar-
ison between using the ground truth noise scale and using
the jointly learned σnoise is shown in the supplementary ma-
terial. Therefore, no additional hyper-parameter tuning is
required by Balanced MSE, making Balanced MSE more
friendly to practitioners. We adopt the joint optimization
paradigm in all empirical analyses unless specified.
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Figure 3. Comparison of marginal label distributions on 2D linear regression. Least square and reweighting show visible bias towards the
high-frequency area around the center. In comparison, Balanced MSE achieves the closest marginal label distribution to the uniform test
distribution.

𝑦 = tan	(𝑥) 𝑦 = 𝑥! 𝑦 = 𝑒" 𝑦 = log	(𝑥)

Figure 4. Qualitative comparison for nonlinear regression. Four nonlinear functions are studied. Balanced MSE (in red) gives the closest
estimation to the oracle (in blue).

4. Experiments

4.1. Synthetic Benchmarks

We construct a simple one-dimensional linear imbal-
anced regression dataset, with the training label distribu-
tion being normal or exponential and skewed to various ex-
tents. We train a one-layer linear regressor on the imbal-
anced training set and test on a uniform test set with no ad-
ditive noise. We compare three types of regressors: a least-
square estimator, a linear regressor inversely reweighted by
the true ptrain(y) as described in [38], and Balanced MSE’s
closed-form option GAI with true noise scale. We show the
visualized results in Fig. 2. We observe that the reweighted
regressor shows increasingly larger error when the training
distribution becomes more skewed. In comparison, Bal-
anced MSE gives an accurate estimation that is robust to
different levels of skewness.

We further compare the three methods on a two-
dimensional regression. The training label distribution is set
as a Multivariate Normal (MVN) distribution. We visualize
the marginal label distributions in Fig. 3, where Balanced
MSE achieves a marginal label distribution closest to uni-
form. For nonlinear regressions, Balanced MSE achieves a
consistent effectiveness as well, as shown in Fig. 4. We pro-
vide another experiment on random seeds in the supplemen-
tary material to demonstrate Balanced MSE’s robustness to
noise.

Despite recent works [31,38] focusing on estimating the
training label distribution, our synthetic benchmark shows
that the bottleneck of existing techniques is reweighting.
Even given the true label distribution, reweighting fails to

find the optimal estimator in all settings. Our conclusion
aligns with recent research that shows reweighting’s inca-
pability on imbalanced classification [5,36]. In comparison,
our proposed Balanced MSE is robust to different skewness
of the training distribution and noise, meanwhile applicable
to nonlinear and multi-dimensional regressions.

We provide quantitative results for the above described
synthetic benchmark in the supplementary material, where
we compare different implementation options and choices
of noise scale as well. The results show that the numeri-
cal option achieves comparable results with closed-form op-
tions. Moreover, the jointly-optimized noise scale achieves
near-optimal results in most cases.

4.2. Real-World Benchmarks

4.2.1 Datasets and Settings

Age and Depth Estimation. We select two representative
tasks from [38]’s DIR benchmark. We estimate ages from
face images on the IMDB-WIKI-DIR dataset and estimate
depth maps from images of indoor scenes on the NYUD2-
DIR dataset.
Imbalanced Human Mesh Recovery (IHMR). IHMR
is a new, multi-dimensional imbalanced regression bench-
mark. We estimate human meshes from images, where the
mesh is represented by a parametric human model known
as SMPL [25]. Typically, SMPL model has two parameters:
θ ∈ R24×3 represents the rotation of 23 body joints and 1
global orientation and β ∈ R10 represents the 10 PCA com-
ponents for body shape. Therefore, the label space of IHMR
is multi-dimensional. Aligned with recent works [30], we
observe that the distribution of human meshes is long-tailed.
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Table 1. Comparison experiment on IMDB-WIKI-DIR. †: MAE metric reported in [38]. Best results are bolded.

bMAE↓ MAE↓

Method All Many Med. Few All Many Med. Few

Vanilla† 13.92 7.32 15.93 32.78 8.06 7.23 15.12 26.33

RRT† 13.12 7.27 14.03 30.48 7.81 7.07 14.06 25.13
RRT+LDS† 13.09 7.30 14.05 30.26 7.79 7.08 13.76 24.64

Ours (BMC) 12.69 7.59 12.90 28.28 8.08 7.52 12.47 23.29
Ours (GAI) 12.66 7.65 12.68 28.14 8.12 7.58 12.27 23.05

Table 2. Comparison experiment on NYUD2-DIR. †: reported in [38]. Best results are bolded.

RMSE↓ δ1 ↑

Method All Many Med. Few All Many Med. Few

Vanilla† 1.477 0.591 0.952 2.123 0.677 0.777 0.693 0.570
Vanilla + LDS† 1.387 0.671 0.913 1.954 0.672 0.701 0.706 0.630

Ours (BNI) 1.283 0.787 0.870 1.736 0.694 0.622 0.806 0.723
Ours (GAI) 1.251 0.692 0.959 1.703 0.702 0.676 0.734 0.715

We show a visualization of training distribution in the sup-
plementary material. Following [23], we train on a com-
bination of 3D and 2D human datasets and test on an in-
the-wild 3D dataset. Detailed settings can be found in the
supplementary material.

4.2.2 Evaluation Metrics

The DIR benchmark [38] uses primarily overall metric, e.g.,
Mean Absolute Error (MAE) to report the performance on
the benchmark. This is on the assumption that the test
dataset is perfectly balanced. However, we observe visi-
ble tails in IMDB-WIKI-DIR’s test set as shown in the sup-
plementary material. To fairly measure the model’s perfor-
mance on tail labels, we follow the idea of balanced met-
rics [3], and divide the label space into a finite number
of even sub-regions, compute the average inside the sub-
regions, and take the mean overall sub-regions. We name it
”balanced-” (”b-”) metric, e.g., bMAE.
Age & Depth Estimation. We primarily report bMAE on
IMDB-WIKI-DIR. NYUD2-DIR’s test set is balanced, we
follow [38] and report RMSE.
Imbalanced Human Mesh Recovery (IHMR). We extend
HMR’s evaluation metrics to balanced metrics in IHMR.
We evenly divide the label space into 100 sub-regions ac-
cording to their vertex-based distances to the mean parame-
ter and compute balanced metrics as described above. Fol-
lowing [30], we primarily report balanced mean per-vertex
position error (bMPVPE). We also report balanced mean
per-joint position error (bMPJPE) and balanced Procrustes-
aligned mean per joint position error (bPA-MPJPE). We in-
clude the ”tail 5%” metric and the ”tail 10%” metric to show
performance on extreme poses as well.

4.2.3 Comparison Results

Tab. 1 shows a comparison with state-of-the-art (SOTA)
methods on age estimation. Regressor Re-Training
(RRT) [38] first trains the feature extractor normally and
retrain the last linear layer using inverse re-weighting.
RRT+LDS is an improved version of RRT, where train-
ing label distribution is estimated using Label Distribution
Smoothing [38]. RRT and RRT+LDS are the best per-
forming regressor learning methods on IMDB-WIKI-DIR
in [38]’s benchmark. Balanced MSE substantially outper-
forms the previous methods. Notably, the BMC option out-
performs SOTAs with a large margin without relying on the
pre-processed training label distribution. We further ana-
lyze the bMAE gain in Fig. 5 and observe an effective trade-
off between frequent and rare labels towards a balanced es-
timation. Note that we do not include Feature Distribution
Smoothing (FDS) in the comparison since it works on fea-
ture learning and should be complementary to our method.

Tab. 2 shows comparison with SOTA on depth estima-
tion. Note that depth map has an inter-pixel dependency,
the pixel-wise error σnoise can be under-estimated and the
BMC can give an inaccurate estimation to ptrain(y). We set
a fixed σnoise to 1, and use BNI for numerical option eval-
uation. Compared with the SOTA, both closed-form and
numerical implementations achieve clear improvements.

Tab. 3 shows a comparison between Balanced MSE and
existing HMR methods. Balanced MSE outperforms the
baseline by a large margin on the main metric bMPVPE (-
3.4). We show the qualitative comparison in Fig. 6. PM-
Net [30] achieves better results on tail-5% bMPVPE, by
designing prototypes and adaptively selecting them as the
initialization for SMPL regression. It is noteworthy that
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Figure 5. Balanced MSE’s bMAE gain over the baseline. The light blue area in the background shows the training label histogram of
IMDB-WIKI-DIR. Balanced MSE improves the performance on tail labels (age < 20 and > 70) substantially.

Figure 6. Qualitative comparison of Balanced MSE and the baseline, SPIN-RT. Left: SPIN-RT. Right: Balanced MSE. We observe that the
baseline’s predictions are less stretched out. They bias towards the mean pose, particularly for poses like raising arms and bending legs. In
comparison, our method effectively eliminates the bias and recovers rare poses.

Table 3. Comparison experiment on Imbalanced Human Mesh Recovery. †: reported in [30]. SPIN-RT: keep the SPIN’s feature extractor
fixed and retrain the last linear regression layers. Best results are bolded.

bMPVPE↓ bMPJPE↓ bPA-MPJPE↓

Method All 10% 5% All 10% 5% All 10% 5%

SPIN† - 130.0 130.6 - - - - - -
PM-Net† - 124.9 126.4 - - - - - -
SPIN-RT 116.1 127.0 130.5 99.58 113.5 114.5 66.53 77.71 76.66

Ours (BMC) 113.9 128.6 129.6 97.87 113.7 113.0 65.90 77.73 76.35
Ours (GAI) 112.7 122.9 128.1 96.70 108.8 111.9 64.69 74.04 74.35

PM-Net improves the regression initialization and should
be complementary to our method.

5. Discussion and Conclusion
In conclusion, we revisit MSE’s probabilistic interpreta-

tion and identify its ineffectiveness in imbalanced regres-
sion. We therefore propose a statistically principled loss
function, Balanced MSE, for imbalanced regression. We
further discuss various implementation options of Balanced
MSE, including both closed-form options and numerical
options. Balanced MSE outperforms existing methods on
various uni- and multi-dimensional imbalanced regression
benchmarks.
Future Works. Future works may use Balanced MSE as
a bridge to introduce more approaches that are developed
on the imbalanced classification to the imbalanced regres-
sion. For example, Eq. 3.15 can be viewed as Softmax with
temperature. Margin-based methods might be introduced to

adjust the pair-wise distances as well. One may also lever-
age deep generative models, e.g., VAE [22] and GAN [11],
to better model ptrain(y).
Broader Impacts. Our method only addresses the bias
brought by imbalanced label distribution. However, there
are still other types of biases in a training dataset besides
the mentioned label imbalance. A regressor may still learn
those biases and make predictions that produce negative so-
cial impacts even with the proposed method applied.
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