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A. Additional Details of Evaluation Metrics
Minimum Matching Distance (MMD) [1] measures the
fidelity of a set of generated shapes Sc with respect to the
set of ground truth shapes Sgt. Specifically, we match every
shape xgt in Sgt to the generated shape xc in Sc with mini-
mum distance, and report the average macthed distance.
Earth Mover’s Distance (EMD) [10] is the solution, i.e.,
the minimum cost, to transport one shape’s point cloud to
another. It is defined in Eq. (1), where φ is a bijection. The
bijection is highly indicative of uniformity of the generated
shapes. We use the implementation provided by MSN [8].

dEMD(xA,xB) = min
φ:xA→xB

1

|xA|
∑
p∈xA

||p− φ(p)||2 (1)

Unidirectional Chamfer Distance (UCD) measures the
squared L2 distance from the partial input shape xp to the
complete output xc, as shown in Eq. (2).

dUCD(xp,xc) =
1

|xp|
∑
p∈xp

min
q∈xc

||p− q||22 (2)

Unidirectional Hausdorff Distance (UHD) [4, 12], simi-
larly, measures the single-sided Hausdorff distance:

dUHD(xp,xc) = max
p∈xp

min
q∈xc

||p− q||22 (3)

F1 score, following pcl2pcl [4], is defined as the harmonic
average of the accuracy and the completeness, where ac-
curacy measures the fraction of points in the xc that are
matched in the corresponding ground truth shape xgt, and
completeness measures the fraction of points in the xgt that
are matched in xc. Here, the status of matching is deter-
mined by a threshold ε = 0.03 for L2 distance.

B. Additional Details of Datasets
In Sec. 4.3 of the main paper, both the virtual scans and

the ball-holed partial shapes follow the same train-test split

of ShapeNet [3], whereas the PartNet [9] follows the train-
test split provided by MPC [12]. As some shapes in the
PartNet test set are present in the ShapeNet train set, we re-
move them for evaluating the PartNet target domain. The
ball-holed partial shapes in this section are generated as
described in PF-Net [7], i.e., removing exactly 512 points
from the complete shape. But in Fig. 1 and Fig. 9 of the
main paper, higher incompleteness levels are tested to as-
sess the robustness of ShapeInversion.

The real-world partial scans are provided by pcl2pcl [4].
Both ScanNet [5] and KITTI [6] are split into train set and
test set, and the mapping GAN of the pcl2pcl framework,
which maps the latent space of partial shapes to that of the
complete ones, is retrained on the real scan train set. Note
that MatterPort3D [2] does not have its own train set, so
pcl2pcl is evaluated on MatterPort3D using the model re-
trained on ScanNet, given that both these two datasets are
captured by depth cameras. In contrast, ShapeInversion
does not need the real scan train set, and is directly eval-
uated on the test set.

C. Additional Details on Implementation
Pre-training. We follow Shu et al. [11] to train the tree-
GAN baseline. The PatchVariance module has n = 100
patches, each with k = 30 points. This would ensure the
entire generated shape (with 2048 points) is sampled via
FPS. This setting works for r-GAN [1] as well, as shown
in Fig. 1. tree-GAN is trained on eight Nvidia V100 GPUs
for 2000 epochs. For the four categories with more than
3000 shapes, i.e., plane, car, chair, and table, the batch size
is 512; for the other four categories with fewer shapes, i.e.,
cabinet, lamp, sofa, and boat, the batch size is 128 to train
for enough iterations.
Inversion. The k in k-Mask is 5. We manually split the in-
version stage into four sub-stages, each with different learn-
ing rates for z and θ: αz = [1×10−2, 1×10−4, 1×10−5, 1×



Figure 1. Validation of the significance of PatchVariance on r-GAN [1]. Non-uniformity issue is a common problem faced by point cloud
GANs, our PatchVariance loss directly works on the generated point cloud, and is invariant to the architecture of the generator, hence it
effectively enhances the uniformity of generated point clouds for r-GAN as well. Darker regions have a higher density of points

Figure 2. More qualitative results for shape completion on real-world partial scans. Note that pcl2pcl is retrained with real-world partial
shapes (together with synthetic complete shapes in a unpaired manner [4]). In contrast, ShapeInversion does not use any real scans, yet,
reconstructs high-fidelity shapes that are more faithful to the partial input

10−6], and αθ = [2× 10−7, 1× 10−6, 1× 10−6, 2× 10−7].
For bulk structures, i.e., car, couch, cabinet, and plane, each
sub-stage consists of 30 iterations; for thin structures, i.e.,
chair, lamp, table, and boat, each sub-stage consists of 200
iterations.

D. Additional Qualitative Results
We show more qualitative results on shape completion

for virtual scans (Fig. 3), cross-data validation (Fig. 4),
real scans (Fig. 2), shape jittering (Fig. 5), shape morpging
(Fig. 6), as well as on the effectiveness of PatchVariance on
r-GAN (Fig. 1).



Figure 3. Qualitative comparison on the ShapeNet benchmark. The resolution of partial inputs, complete shapes, and ground truths are all
2048 points



Figure 4. Additional visualization of cross-domain validation. Different partial forms of the same object are tested. In-domain results are
in dark green whereas out-of-domain ones are in purple. Supervised methods CRN and PF-Net show significant performance drop with
domain change; unsupervised methods pcl2pcl and MPC show relatively better results for out-of-domain inputs. ShapeInversion constantly
provides plausible and accurate outputs for all partial forms. Note that CRN leverages the partial input during the refinement stage; PF-Net
only predicts the missing regions and combines the partial input as the final output



Figure 5. Additional qualitative results for shape random jittering by ShapeInversion. Random jittering changes one shape into other
plausible shapes of different geometries by introducing perturbation in the latent space



Figure 6. Additional qualitative results for shape interpolation (morphing) by ShapeInversion. A sound transition from one shape to another
is achieved by interpolation between their corresponding latent vectors z and generator parameters θ
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