
Variational Relational Point Completion Network
– Supplementary Material –

A. Overview
In this supplementary material, we provide in-depth

method analysis (Sec. B), inference details (Sec. C), de-
tailed dataset comparisons (Sec. G), comprehensive abla-
tion studies (Sec. E), resource usages (Sec. F), and the user
study on real scans (Sec. D). Qualitative results with differ-
ent settings are shown in the corresponding sections.

B. Analysis
B.1. Variational Modeling

Inspired by [13], our VMNet consists of two paral-
lel paths: 1) a reconstruction path, and 2) a comple-
tion path. Both two paths follow similar variational auto-
encoder structures, which generates complete point clouds
using embedded global features and predicted distributions.
During training, the encoded distributions (posterior) for in-
complete point clouds (completion path) are guided by the
encoded distributions (prior) for complete point clouds (re-
construction path). In this way, we mitigate the domain gap
between the posterior and the prior distributions by regular-
izing the posterior distribution to approach the prior distri-
bution. Consequently, the learned smooth complete shape
priors are incorporated into our shape completion process.
During inference, we only use the completion path. We ran-
domly generate a sample from the learned posterior distri-
bution pψ(zg|X) for shape completion. Theoretically, di-
verse plausible coarse completions can be generated by us-
ing different samples from pψ(zg|X). However, we observe
similar predicted coarse completions for different samples
(see Fig. 1). In other words, different samples do not in-
fluence our completion results. According to [13], employ-
ing a generative adversarial learning scheme can highly in-
crease the shape completion diversity, which we leave as a
future research direction.

B.2. Local Point Relation Learning

Relation operations [2, 12] (also known as self-attention
operations) adaptively learn a meaningful compositional
structure that is used to predict adaptive weights by ex-
ploiting relations among local elements. Comparing to con-
ventional convolution operations that use fixed weights, re-

Figure 1: Coarse Completion Results by Different Sam-
ples. We can observe that the generated different hypothe-
ses for coarse shape skeletons are similar with each other.
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Figure 2: Observing different parts of the chair, the VR-
CNet generates different complete chairs based on the
partial observations and predicted shape skeletons. In
(a) and (b), the VRCNet predicts complete chair shapes by
learning the shape geometrical symmetry from the partial
observations. Both (c) and (d) show the incomplete shapes
with large missing ratios, and the VRCNet predicts the fine
complete shapes based on the coarse complete shapes.

lation operations adapt aggregation weights based on the
composability of local elements. Motivated by the suc-
cess of using relation operations in natural language pro-
cess and image applications, we expand and use relation
operations to learn point relations in neighboring points
for point cloud completion. Previous methods [11, 4, 9]
preserve observed local details from the incomplete point
clouds in their completion results by learning local point
features. However, they cannot generate fine-grained com-
plete shapes for those missing parts. Consequently, their
completion results often have high-quality observed shape
parts and low-quality missing shape parts. In contrast, with
the help of self-attention operations, our RENet can adap-
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Figure 3: Qualitative Results on the MVP Dataset by Different Methods. Note that we use different point sizes for
different shapes to achieve better visualizations.

tively recover fine-grained complete shapes by implicitly
predicting shape structural relations, such as geometrical
symmetries, regular arrangements and surface smoothness.
More qualitative results by different methods are shown in
Fig. 3, which show that the RENet can effectively learn
structural relations for shape completion. For example, the
lamp completion results (the 3rd row of Fig. 3) show that
the VRCNet can recover those cylinder bulbs by the learned
geometrical symmetry. In particular, given different ob-
served incomplete shapes, the VRCNet can generate differ-
ent complete 3D shapes with the help of both structural rela-
tions from the partial observations and the generated coarse
overall shape skeletons (shown in Fig. 2). Moreover, the
VRCNet can generate pluralistic complete shapes for real-
scanned incomplete point clouds (see Fig. 4), which vali-
dates its strong robustness and generaliability.

C. Inference Details

Our VRCNet consists of two consecutive sub-networks,
PMNet and RENet. PMNet generates overall shape skele-
tons (i.e. coarse completions) using probabilistic model-
ing, and RENet enhances structural relations at multiple
scales to generate our fine completions. For inference, PM-
Net only uses its completion path to predict coarse com-
pletions based on the incomplete point clouds. A coarse
complete point cloud that consists of 1024 points can be
regarded as 3D adaptive points to facilitate learning local
point relations. The coarse completion is combined with
the incomplete point cloud (2048 points) as the input (3072
points) to the RENet. After exploiting multi-scale point fea-
tures, RENet uses the Edge-aware Feature Expansion (EFE)
module [4] to upsample and expand the point feature so
as to generate complete point clouds with different reso-
lutions. For example, we generate complete shapes with
16384 points by 1) upsampling to 18432 points (3072 × 5)
and thus 2) downsampling to 16384 points using farthest
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Figure 4: Our completion results for real-scanned incomplete point clouds. (a) shows our completion results for incom-
plete cars from the KITTI dataset [1]. (b) and (c) show our results for scanned incomplete chairs and tables, respectively.

Table 1: A user study of completion quality on real scans.
The values are average scores given by volunteers (3 points
for best result, 1 point for the worst result). VRCNet is the
most preferred method overall

Category PCN [10] NSFA [11] VRCNet
Car (KITTI) 2.87 1.07 2.07
Chair (ScanNet) 1.60 1.73 2.67
Table (ScanNet) 1.27 2.20 2.60
Overall 1.91 1.67 2.45

point sampling.

D. User Study on Real Scans
We conduct a user study on the performances of various

methods in Tab 1. Specifically, we gather a group of 15 vol-
unteers to rank the quality of complete point cloud predicted
by PCN, NSFA, and our VRCNet, on the real scans of three
object categories: car, chair and table. For each object cat-
egory, the volunteers are given three anonymous groups of
results, produced by three methods. The volunteers are in-
structed to give the best, middle, and worst results 3, 2, and
1 point(s) respectively. We then compute the average scores
of all volunteers for each method and class category. The
evaluation is conducted in a double-blind manner (the meth-

Table 2: Ablation studies (2,048 points) for the proposed
network modules, including Point Self-Attention Kernel,
Dual-Path Architecture and Point Selective Kernel Module.

Point
Self-Attention

Dual-Path
Architecture

Kernel
Selection

CD F1

6.64 0.476
X 6.43 0.488

X 6.35 0.484
X X 6.35 0.490

X X 6.15 0.492
X X X 5.96 0.499

ods are anonymous to both the instructor and the volunteers)
and the order of the groups are shuffled for each category.
Our VRCNet is the most favored method overall amongst
the three. PCN obtains higher score for car completion be-
cause it generates smooth mean shapes for all cars, even
though few observed shape details of those cars are pre-
served in their completion results. For the other two cat-
egories, chair and table, the VRCNet receives the highest
scores due to its effectiveness on reconstructing complete
shapes using predicted shape symmetries.

E. Ablation Studies

We provide the detailed ablation studies in Table 2,
which reports the evaluation results with different combi-
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Table 3: Comparing MVP with existing datasets. MVP has many appealing properties, such as 1) diversity of uniform
views; 2) large-scale and high-quality; 3) rich categories. Note that both PCN and C3D only randomly render One incomplete
point cloud for each CAD model to construct their testing sets. (C3D: Completion3D; Cat.: Categories; Distri.: Distribution;
Reso.: Resolution; PC: Point Cloud; FPS: Farthest Point Sampling; PDS: Poisson Disk Sampling. Point cloud resolution is
shown as multiples of 2048 points.)

#Cat.
Training Set Testing Set Virtual Camera Complete PC Incomplete PC

#CAD #Pair #CAD #Pair Num. Distri. Reso. Sampling Reso. Sampling Reso.

PCN [10] 8 28974 ∼200k 1200 1200 8 Random 160×120 Uniform 8× Random ∼3000
C3D [5] 8 28974 28974 1184 1184 1 Random 160×120 Uniform 1× Random 1×
MSN [3] 8 28974 ∼1.4m 1200 1200 50 Random 160×120 Uniform 4× Random ∼ 5000
Wang et. al. [6] 8 28974 28974 1200 1200 1 Random 160×120 Uniform 1× Random 1×
SANet [7] 8 28974 ∼200k 1200 1200 8 Random 160×120 Uniform 1× Random 1×
NSFA [11] 8 28974 ∼200k 1200 1200 7 Random 160×120 Uniform 8× Random 1×
MVP 16 2400 62400 1600 41600 26 Uniform 1600×1200 PDS 1/2/4/8× FPS 1×

Virtual camera with a low resolution and a 
small focal length

Virtual camera with a high resolution and a 
large focal length

Figure 5: Rendered Incomplete Point Clouds with Different Camera Resolutions. We use a high camera resolution to
capture more realistic shapes than using low resolutions.

nations of the proposed modules, Point Self-Attention Ker-
nel (PSA), Dual-Path Architecture (DP) and Point Selective
Kernel (PSK) Module. As reported in Table 2, it is obvious
that using the proposed modules can improve the comple-
tion accuracy. During training and evaluation, the effective-
ness of using PSA and DP are very straightforward. PSK
may lead to fluctuating evaluation results during training,
but it can highly improve the point cloud completion per-
formance.

F. Resource Usage

We report the resource usages by PCN [10], NSFA [11]
and our VRCNet in the Table 4. PCN and our VRCNet are
implemented using pytorch, and we use the official imple-
mentation (by tensorflow) for NSFA. To achieve a fair com-
parison for the inference (Inf.) time, we use the same batch
size 32 and test all methods by using an NVIDIA V100
GPU on the same workstation. Note that, NSFA has many
non-trainable operations (such as ball query, grouping and
sampling), and hence it takes the longest inference time al-
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Figure 6: Sampling Complete Point Clouds with Different Sampling Methods. Unlike previous methods that use uniform
sampling, we use Poisson Disk Sampling to generate complete point clouds, which can better describe the underlying 3D
shape surfaces.

Table 4: Resource Usages.

Method #Params. (M) Model Size (Mib) Inf. Time (ms)

PCN [29] 6.86 26 2.7
NSFA [30] 5.38 64 764.9
VRCNet 17.47 67 183.3

though it has the least parameters. Our VRCNet achieves
significant improvements in completion qualities with an
acceptable increment in the computational cost.

G. Dataset Comparisons
As stated in the main paper, previous methods usually

use two datasets for incomplete point cloud: ShapeNet [8]
by PCN [10] and Completion3D [5]. Because the incom-
plete point cloud dataset created by PCN is too massive,
most following works (including the Completion3D) use a
subset of ShapeNet [8] derived from PCN [10]. However,
they do not have a unified and standardized dataset setting,
which makes it difficult in directly comparing their perfor-
mance. Furthermore, their generated shapes (incomplete
and complete point clouds) all have low qualities, which
makes their data unrealistic. In view of this, we create the

Multiple-View Partial point cloud (MVP) dataset, which
can be a high-quality and unified benchmark for partial
point clouds. The detailed comparisons between different
datasets are reported in Table 3. The proposed MVP dataset
has more shape categories (16 v.s. 8), more testing data
(e.g. 41600 v.s. 1200) and higher quality point clouds by
using better data preparation methods (e.g. PDS, FPS and
Uniformly distributed camera poses) than previous datasets.
The qualitative comparisons for rendered incomplete shapes
are visualized in Fig. 5. By using a high resolution and
a large focal length, our rendered partial point clouds are
more realistic than using low resolutions and small focal
lengths. Moreover, the qualitative comparisons for sampled
complete point clouds by different sampling methods are
shown in Fig 6. The MVP dataset uses the Poisson Disk
Sampling (PDS) method, which can yield smoother com-
plete point clouds than using uniform sampling.

More qualitative comparisons can be found in our
supplementary video.
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