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This supplemental document reports details on our pro-
posed ForgeryNet. Appendix A and B describe the collec-
tion and preprocessing of the original data. In Appendix C,
we present the 15 forgery approaches of ForgeryNet. In Ap-
pendix D and E, we introduce the re-rendering process and
perturbations we use to imitate challenges encountered in
real-world scenarios. We list specifics of our annotations
and the dataset split in Appendix F and G. Finally, we give
full details on our two benchmarks in Appendix H and I
respectively.

A. Original Data Collection
In contrast to previous facial forgery datasets [25, 40]

which only involve original data taken from certain brief-
ing scenarios or TV shows, we choose four face datasets [2,
8,14,35] as the original data with diversified face identities,
angles, expressions, actions, etc., for the sake of building a
wild and diverse forgery dataset.
(1) CREMA-D [2] is a dataset of 7, 442 video clips from 48
male and 43 female actors with a variety of ethnicities, ages
ranging from 20 to 74, and six different emotions.
(2) RAVDESS [35] consists of 7, 356 files including both
video footages and sound tracks from 24 professional ac-
tors with eight emotions, vocalizing two lexically-matched
statements in a neutral North American accent.
(3) VoxCeleb2 [8] is constructed with over one million
YouTube videos with utterances of 6, 112 celebrities.
(4) AVSpeech [14] is a dataset of 290k YouTube video clips
of 3 ∼ 10 seconds long. Note that the speakers talk with no
audio background interference, i.e. the only audible sound
in the soundtrack of a video belongs to a single visible and
speaking person.

*Equal contribution.
†Work done during an internship at SenseTime Research.
‡Corresponding author.

B. Original Data Preprocessing

The selected in-the-wild videos vary in length
(2 seconds ∼ 1 hour), FPS (20 ∼ 30), semantic an-
notations, and number of faces appearing in one frame. For
further manipulation, we preprocess the original data into a
controllable source video set:

(1) Video-Origin & Image-Origin: Due to the large amount
of videos in VoxCeleb2 and AVSpeech, we respectively
pick 43, 941 and 43, 584 videos with length over 6 sec-
onds. The videos are chosen randomly, yet in VoxCeleb2
we guarantee all 6, 112 identities are included in the se-
lected video set. All the selected videos from these two
datasets are then truncated into 6 ∼ 10 seconds to en-
rich length variations, while those from CREMA-D and
RAVDESS are retained without cropping due to their short
duration (2 ∼ 5 seconds). The images of image-origin
are extracted from the aforementioned video-origin
set with 20 FPS.

(2) Target Face: We detect faces from images in
image-origin by RetinaFace [10] for future manipula-
tion. As shown in Fig. 2 in the main paper, in some sce-
narios, multiple faces co-occur in a single frame, such as
“conversation between two or more people” or “crowd gath-
ering”. To determine the target face for forgery, we first
use a simple IoU (Intersection-over-Union) based tracking
to acquire face tubes each with faces of the same person
identity. We select the face which appears most frequently
in the video, i.e. has the longest face tube.

(3) Attribute Prediction: To manipulate facial attributes, the
deep models require attribute labels as a conditional input.
However, data in video/image-origin lack attribute
labels due to limited annotations (e.g. only “emotions” and
“age”) of the original datasets. To this end, we predict the
attribute labels with Slim-CNN [33, 42], a state-of-the-art



face attribute classification method.

C. Forgery Approach
To guarantee the diversity of forgery approaches in the

proposed ForgeryNet, we introduce 15 face forgery ap-
proaches [4, 6, 11, 17, 26–29, 36, 37, 44], which are shown
in the main paper. We conclude five architecture variants
as, 1) Encoder-Decoder [1] is used to disentangle the iden-
tity from identity-agnostic attributes and then modify/swap
the encodings of the target before passing them through the
decoder. 2) Vanilla GAN [43] consists of a generator and a
discriminator which work against each other. After training,
the discriminator is discarded and the generator is used to
generate content. 3) Pix2Pix [29] is a popular improvement
on GANs which enables translations from one image do-
main to another. The generator is an encoder-decoder net-
work with skip connections from encoder to decoder which
enable the generator to produce high fidelity imagery by by-
passing some compression layers when needed. In addition
to the above three variants, which are the basic elements for
generating a forgery image, some sequential and dynamic-
length data (e.g. audio and video) are often handled by 4)
RNN/LSTM [4], and 5) Graphics Formation [13]. The lat-
ter represents a simulation of the classical image formation
process of computer graphics, that is, reconstructing a 3D
face model with 3DMM parameters, which are the output
of a classical analysis-by-synthesis algorithm, and then ren-
dering the generated 3D face model into a 2D image.

D. Re-rendering Process
(1) For the face mask condition shown in Fig. 4 (e-1) in the
main paper, we first align the landmarks of Ĩft and Ift to
align their masks Ĩmt and Imt , and then calculate an optimal
transformation to align Ĩft back to the It. Color matching is
then operated on the re-aligned face to make Ĩft more adapt-
able to Ift

1. The following step is blending, with the objec-
tive of making Ĩft seamlessly fit the target full image It. We
corrode and blur the smaller mask between Ĩmt and Imt , and
perform the Poisson blending along the outer contour of Ĩft
to get the full forgery image Ĩt.
(2) For the face bounding-box condition, an easy way is to
directly substitute the bounding-box in the original target
image Ibt with a forgery one Ĩbt , and simply perform the
Poisson blending along the edge of the bounding-box as
shown in Fig. 4 (e-2) in the main paper. However, some
GAN-based approaches always induce some unexpected
details outside the face region, especially some background
clutters with jittery and blurred information. Meanwhile,
some graphic-based approaches cannot infer the texture of

1Identity-remained forgery do not have this step since it only changes
local intrinsic or external attributes. Moreover, some editing even aims at
altering colors such as lip or eye color.
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Figure 1: Perturbations in ForgeryNet. Different per-
turbations are marked in different colors. This example
shows the effects of one or mixed perturbations. Arrows
indicate the mixture order. The image on the left is first
added “GlassBlur” followed by “JpegCompression” and at
last “RandomBrightness”.

non-face regions such as hair. To this end, we first calculate
the convex hull of the face area through the face landmarks
to obtain the face mask Ĩmt , and then turn to the re-rendering
solution for the face mask condition described above, as is
illustrated in Fig. 4 (e-3) in the main paper.

Each frame of a video is re-rendered through the afore-
mentioned steps. However, the obtained re-rendered frame
sequence often contains frequent jitters due to misalignment
and forgery effect. To generate a realistic and smooth video,
we apply slight motion blur as well as compression or super-
resolution to the frame sequence.

E. Perturbation

Fig. 1 presents an overview of perturbations. For exam-
ple, “GlassBlur” and “JpegCompression” can simulate dis-
tortion of information in video capture and storage in the
real world. Some color distortions such as “RandomBright-
ness” and “ChannelShuffle” provide diversity in color dis-
tributions to adapt to different color renderings of a video.

Mixed perturbations with 2 ∼ 4 distortions are randomly
applied to approximately 98% data, while another 1% are
added with a single perturbation. The rest 1% are remained
unchanged. Each perturbation has 1 ∼ 5 intensity levels.
Types and levels of the applied perturbations are all chosen
at random, and are applied at the video level, i.e. all frames
of a video share the same type of perturbation with the
same level. Meanwhile, to avoid severe distribution bias,
we guarantee each pair of perturbation types co-occurs at



Table 1: Summary of the four types of forgery approaches. In this table, the input, output, architecture, resolution,
modification ability, and whether to retrain in inference of each forgery approach are presented. S/T represents the modality
of xs and xt. v:=video, i:=image, a:=audio, m:= mask, s:=sketch, l:= noise, S:=single identity, M:=multiple identities

Method S/T CG/GAN Input Modification Resolution Retraining

Face
Reenactment

FirstOrderMotion [44] v/i GAN M/M pose,expression 256*256 No need
ATVG-Net [4] v/i GAN M/M pose,expression 128*128 No need

Talking-head Video [17] a/v CG+GAN M/S mouth 256*256 1∼3 portraits

Face
Editing

StarGAN2 [6] i/i GAN M/M attribute transfer 256*256 portraits
StyleGAN2 [27] l/i GAN M/M rebuild from latent 1024*1024 portraits
MaskGAN [28] m,i/i GAN M/M editing record 512*512 portraits,mask

SC-FEGAN [26] s,i/i GAN M/M sketch record 512*512 portraits,sketch
DiscoFaceGAN [11] i/i CG+GAN M/M 3dmm attributes 1024*1024 portraits

Face
Transfer

BlendFace v/v CG M/M identity, expression Any No need
MMReplacement i/i CG M/M identity, expression Any at least 1 protrait

Face Swap
FSGAN [36] v/v GAN M/M identity 256*256 No need

DeepFakes [37] v/v GAN S/S identity 192*192 2k∼5k portraits
FaceShifter [29] i/i GAN M/M identity 256*256 No need

least once. The variety of perturbations improves the di-
versity and realness of ForgeryNet to better imitate the data
distribution in real-world scenarios.

F. ForgeryNet Annotation
Image Forgery Classification. The annotations for this
task have been elaborated in Sec. 3.3 in the main paper,
where we introduce three types of forgery labels, i.e. la-
bels for two-way (real / fake), three-way (real / fake with
identity-replaced forgery approaches / fake with identity-
remained forgery approaches), and n-way (n = 16, real
and 15 respective forgery approaches) classification tasks
respectively.
Spatial Forgery Localization. Due to the fact that forgery
images contain various numbers of faces and each face can
be manipulated completely or partially, it is more substan-
tial to specify the manipulated area in addition to the clas-
sification labels. We convert the forgery image Ĩt and the
corresponding real image It into two gray-scale images to
calculate their pixel-by-pixel absolute differences. We then
normalize the difference map within the face area of the
real image Ift to obtain a forgery distribution Ĩdt . As shown
in Fig. 5 (a) in the main paper, stronger response suggests
the area is manipulated with heavier intensity. Note that
we perform perturbations on the forgery image which cause
further modifications in the whole image. The perturbed
forgery area distributes all over the whole image rather
than merely the face region. In the main paper, compared
to Fig. 5 (b) which shows a near-uniform distribution of
forgery area both inside and outside the faces, the distribu-
tion before perturbation in Fig. 5 (a) shows its advantages in
two aspects: 1) the forgery area focuses more on face area,
which is consistent with how these deep forgery techniques
actually work, and 2) the forgery distribution behaves dis-

tinctive among different types of forgery approaches. Take
face reenactment and face transfer as an example, the for-
mer has particularly high response on lip and also some
medium response around head since the audio- or video-
source always drives the lip and pose of the target being
manipulated, while the latter replaces both identity-aware
and identity-agnostic contents of the target and leads to
more even response inside the face. In this paper, we de-
fine the spatial forgery localization task as “localizing the
face area manipulated by deep forgery approaches”, and
thus the forgery distribution before perturbation Ĩdt is taken
as the ground-truth annotation.

Video Forgery Classification & Temporal Forgery Lo-
calization. As is mentioned in Sec. 3.3 in the main paper,
in contrast to all existing datasets, we construct our video
forgery dataset with untrimmed forgery videos Ṽ′t, each of
which splices real and manipulated segments together. This
is based on the consideration that forgery videos in the real
world often only involve manipulation on a certain subject
at some key frames. Specifically, for each pair of forgery
video Ṽt and its corresponding real video Vt, we first ran-
domly select 1 ∼ 4 segments from the forgery video Ṽt,
and then fill the rest with the corresponding real segments
Vt. Each forgery/real segment in Ṽ′t has no fewer than 9
frames.

Same as image-forgery, the Video Forgery Classification
also contains three types of class annotations. We also pro-
vide the annotations of each fragment in the untrimmed
forgery video and propose a new task, i.e. Temporal Forgery
Localization, to localize the temporal segments which are
manipulated.



G. ForgeryNet Split

We first split the identities of the original videos into two
subsets, training and evaluation, roughly according to a pro-
portion of 7:3. This guarantees that any person appearing in
a training video does not show up in the evaluation set. Note
that the AVSpeech dataset does not provide annotations on
person identity, so we have to assume that different videos
contain different people, and directly split the videos. The
evaluation subset is then further divided into validation and
test with an approximate ratio of 1:2, and there may be some
identity overlaps between the validation and test subsets.
The real data for our image set is sampled from the frames
extracted with these original videos according to some fixed
proportion. Finally, we apply our 15 forgery approaches to
generate manipulated data within each subset respectively,
e.g. the sources and targets for generating validation forgery
data must all come from the validation subset of the original
videos.

H. Image Forgery Analysis Benchmark

H.1. Metrics

Image Forgery Classification. We detail calculation meth-
ods of the metrics listed in Sec. 4.1.1 in the main paper.
For k-way classification (k = 2, 3, 16), we use Accuracy
(Acc) balanced over classes, i.e. we first calculate k accu-
racy values from the k classes respectively, and then take
the uniform average of them as the final balanced accuracy.
We also evaluate the standard Area under ROC curve (AUC)
for binary classification. In terms of the other settings with
more than two classes, we turn to mean Average Precision
(mAP) to measure the discrimination ability of the foren-
sics method. More specifically, the AP of some class i is
simply the AUC calculated with class i as the sole positive
class and all others being negative. After obtaining k APs,
we average them to get mAP. Apart from Acc and mAP, we
also compute binary metrics for 3-way or n-way classifica-
tion, and we sum up probabilities predicted for all forgery
categories as the final fake confidence.
Spatial Forgery Localization. As is mentioned in
Sec. 4.1.2 in the main paper, we choose three metrics for
evaluating predicted maps in our spatial localization task:
two variants of Intersection over Union (IoU) and L1 dis-
tance. Let N denote the number of pixels, and τ be a pre-
defined threshold.

• IoU = 1
N

∑N
i=1 |I[predi ≥ τ ] − I[gti ≥ τ ]| (e.g. τ =

0.1) represents the accuracy over all spatial grids.

• IoUdiff =
1
N

∑N
i=1 I[|predi − gti| ≤ τ ] (e.g. τ = 0.05)

indicates whether the predicted value of each pixel is
close to the groundtruth.

• L1 distance Lossl1 = 1
N

∑N
i=1 |predi − gti| also im-

plies how close is the predicted map to the groundtruth
one.

H.2. Models

Image Forgery Classification. There are in total 11 image-
level classification methods.

• MobileNetV3 [22] is an efficient mobile model, com-
bining the following three layers: depthwise sepa-
rable convolutions from MobileNetV1 [23], the lin-
ear bottleneck and inverted residual structure from
MobileNetV2 [41], and lightweight attention modules
based on squeeze and excitation from MnasNet [45].
We use both MobileNetV3-Small and MobileNetV3-
Large for evaluation.

• EfficientNet-B0 [46] is the baseline network of the
EfficientNet family, which is developed by leverag-
ing a multi-objective neural architecture search based
on mobile inverted bottleneck MBConv [41] with
squeeze-and-excitation optimization [24] added to it.

• ResNet-18 [21] is the smallest ResNet architecture
with 17 convolutional layers and one fully connected
layer for final output.

• Xception [7] is a deep convolutional network architec-
ture based on Inception replaced with depthwise sepa-
rable convolutions. Xception is regarded as our default
baseline in further experiments.

• ResNeSt-101 [48] is a new variant of ResNet. It intro-
duces a modular Split-Attention block that enables at-
tention across different feature-map groups and stacks
these blocks ResNet-style to get better performance
with similar number of parameters.

• SAN19-patchwise [49] takes patchwise self-attention
as the basic building block for image recognition.
Specifically, we uses SAN19 which roughly corre-
sponds to ResNet-50 to evaluate.

• ELA-Xception and SNRFilters-Xception differ from
Xception in the fact that they do not directly take RGB
images as input. More specifically, the input for ELA-
Xception is the resulting difference image from Error
Level Analysis (ELA) [20]. SNRFilters-Xception, as
its name suggests, applies a set of 5× 5 high pass ker-
nels [5] to the original input image, and then concate-
nate the 4 output images along the channel dimension
(the number of input channels of the first convolution
in Xception is changed to 12 accordingly).

• Gram-Net designs Gram Block to leverage global im-
age texture information for fake image detection. The



original paper [34] adds Gram Blocks to the ResNet
architecture. Yet in our benchmark, we apply them to
our baseline model Xception for the sake of fair com-
parison.

• F3-Net [38] explores frequency information for
face forgery detection by taking advantages of two
frequency-aware clues: frequency-aware decomposed
image components and local frequency statistics. Note
that F3-Net also uses Xception as the backbone net-
work.

Spatial Forgery Localization. We select 3 representative
models for spatial localization.

• Xception+Regression uses Xception as the backbone
network, and adds an extra deconvolution layer after
the final feature map to form a direct regression branch
which outputs the spatial forgery map.

• Xception+UNet [39] supplements a usual contracting
network by successive layers where pooling operations
are replaced by upsampling operators. A successive
convolutional layer can learn to assemble a precise out-
put based on this information. For fair comparison,
UNet also uses Xception as its encoder network.

• HRNet [47] starts from a high-resolution convolution
stream, gradually adds high-to-low resolution convolu-
tion streams, and connects the multi-resolution streams
in parallel. We use the HRNet-W48 instantiation.

H.3. Implementation Details

Training. For classification methods, we use the default
cross-entropy loss for training. As for localization meth-
ods, we also add a segmentation loss in addition to the clas-
sification loss. There are two choices for the segmentation
loss: (1) binary cross entropy loss with soft targets aver-
aged over all spatial locations; (2) MSE loss with respect to
groundtruth targets. We select one of these two losses for
each localization model based on validation results.

All models use ImageNet [9] for pre-training. We train
both classification and localization models end-to-end using
synchronous SGD for optimization. The mini-batch size is
set to 128. We adopt a multistep learning rate schedule with
100k iterations in total, and the learning rate is decreased
by a factor of 0.5 at steps 20k, 40k, 60k, 70k, 80k and 90k.
The base learning rate for each model is selected from the
set {0.01, 0.02, 0.05} according to validation performance.
We use linear warm-up [19] from 0.01 during the first 1k it-
erations. The weight decay is set to 10−4 and we apply Nes-
terov momentum of 0.9. We use face images cropped with
provided square bounding boxes (detected boxes enlarged
1.3×) for training. For data augmentation, we with 99%
probability randomly select one perturbation from some set

Table 2: Ablation study on augmentation (image). We
report accuracy and AUC scores of Protocol 1 binary clas-
sification on the validation set with three different levels of
augmentation.

weak aug normal aug enhanced aug
Acc. AUC Acc. AUC Acc. AUC

Xception 66.73 74.75 73.70 82.56 80.78 90.12

of perturbation methods, and apply it to the input image.
Apart from random perturbation, for a model with input
spatial size S×S, we scale the side length to a random value
in range [S, 8S/7], and then randomly crop out a S × S re-
gion. Note that for five Xception-based classification mod-
els S = 299, for three localization models S = 256, and
for the other six classification models S = 224. We also
apply random horizontal flip before feeding the input to the
model.
Inference. We only perform single-crop inference, and di-
rectly scale the input face image to the input spatial size
S × S of the model.

H.4. More Experiments

Ablation Study on Augmentation. We experiment on
three different levels of augmentation: weak, normal and
enhanced. Weak augmentation does not add random pertur-
bation mentioned in Appendix H.3, while normal and en-
hanced settings include different numbers of common per-
turbation methods in the perturbation set for augmentation.
Results of Xception trained on these types of data augmen-
tation are shown in Tab. 2. It can be seen that exerting ap-
propriate augmentation to the training set significantly im-
proves the performance of an image forgery classification
model.
Cross-dataset Experiments. We provide cross-dataset
testing results with our ForgeryNet (image forgery binary
classfication only) as well as three public deepfake datasets
- FF++ (c23) [40], DFDC [12], and DeeperForensics-1.0
(DF1.0) [25] which are only used for testing. For evalua-
tion, we use (1) test set of FF++ (c23); (2) both validation
and test set (only the released half) of DFDC; (3) a subset
of DF1.0 which corresponds to the test set of FF++; (4) test
set of our image benchmark. For video datasets, we extract
frames with temporal stride 30 for frame-level testing. We
present the numbers in Tab. 3. ForgeryNet shows the best
cross-dataset performances on all other test sets, which in-
dicates the strong generality of our dataset.

I. Video Forgery Analysis Benchmark

I.1. Metrics

Video Forgery Classification. The metrics for this task are
the same as those for image classification.



Table 3: Cross-dataset experiments. We report frame-
level AUC scores. Each row corresponds to a model trained
with one of the datasets. Underlined values are results of
models trained and tested on the same dataset, and the bold
ones emphasize best cross-dataset performances.

DF1.0 FF++ DFDC(val) DFDC(test) ForgeryNet

FF++ [40] 85.41 99.43 59.77 62.19 63.80
DFDC [12] 79.60 71.34 90.12 93.50 68.93
ForgeryNet 90.09 85.06 69.68 71.08 90.09

Temporal Forgery Localization. For the temporal local-
ization task, the goal is to generate proposals which have
high temporal overlap with the groundtruth (manipulated
segments) as well as high recall. We give specifics on our
employed metrics for evaluating predicted segments with
respect to the groundtruth ones, which are Average Preci-
sion at some tIoU threshold (AP@t, e.g. t = 0.5), average
AP, as well as Average Recall@K (AR@K, e.g. K = 5).
Note that these metrics mostly reference ActivityNet [18]
evaluation. In details, we choose 10 equally-spaced tIoU
threshold values between 0.5 and 0.95 (inclusive) with a
step size of 0.05. Under a certain tIoU threshold value t, we
may match our predicted segments with the groundtruth ac-
cording to the condition that tIoU≥ t. Recall@K with tIoU
threshold t is defined as the proportion of groundtruth which
can be matched with some prediction, after preserving only
K predicted segments per video on average. AP@t, on the
other hand, is the Area under ROC curve computed with
predictions and their associated confidence scores, treating
the predictions which are matched to some groundtruth seg-
ment with tIoU threshold t as positive. Finally, average AP
and AR@K are simply the uniform average of APs and
Recall@Ks computed at the 10 tIoU thresholds, respec-
tively. Note that both real and fake videos are included in
our evaluation, although the real ones do not contain any
forgery segment (Recall is not be affected by real videos,
but AP is).

I.2. Models

Video Forgery Classification. We choose four typical
models for video classification.

• TSM [30] inserts Temporal Shift Modules to 2D
CNNs to achieve temporal modeling at zero computa-
tion and zero parameters. We follow its default setting
with ResNet-50 as the backbone network.

• SlowFast [16], featuring its two-pathway design with
different input temporal strides, is one of the state-of-
the-art architectures for action recognition. We choose
its R-50 instantiation (without Non-Local blocks), and
set the fast-to-slow ratio α = 4.

• Slow-only is basically the slow pathway of SlowFast,
and we also use the R-50 instantiation. Note that with

the same number of input frames, Slow-only is actu-
ally heavier than SlowFast since the slow branch of the
latter only use 1/α of the frames.

• X3D-M [15] is one member of the X3D family, a series
of efficient video networks obtained by progressive ex-
pansion along multiple axes. It is able to achieve per-
formances nearly comparable with SlowFast R-50 on
common video benchmarks while having much fewer
parameters.

Temporal Forgery Localization. As described in Sec. 6.2
in the main paper, we include a frame-based method, where
we use Xception as the frame prediction model. The logic
of this method can be briefly stated as the following:

1. For a video with T frames, we run the Xception model
to get frame-level scores, and then binarize them with
threshold 0.25, acquiring a sequence of T binary pre-
dictions (real/fake).

2. We enumerate tolerance value in the set {1, 3, 5, 7}.
For a tolerance value t, we inspect the sequence of T
predictions, and selects manipulated segments with at
least 5 frames satisfying that the length of consecutive
real frames in the middle does not exceed t. The con-
fidence score of a segment is simply the average of its
frame-level scores.

3. We combine segments predicted with different toler-
ance levels, and remove duplicates to form the final
predictions.

For two video-based methods (BSN [32] and
BMN [31]), we use SlowFast and X3D-M for extract-
ing clip features, forming four different “feature+method”
pairs. Note that for these feature extraction models, we
use fewer input frames for training than their classification
counterparts to increase temporal locality. Accordingly, the
fast-to-slow ratio α of SlowFast is decreased to 2.

I.3. Implementation Details

Training. For classification methods and feature extraction
models for localization, we use the default cross-entropy
loss for training. The frame-based localization method di-
rectly uses the Xception model trained with the image bi-
nary classification task, and does not need any extra train-
ing. BSN and BMN have their own training loss functions
and procedures which we do not alter.

All models use Kinetics-400 [3] for pre-training. We
train them end-to-end using synchronous SGD for opti-
mization. The mini-batch size is set to 64. We adopt a
multistep learning rate schedule with 50k iterations in to-
tal, and the learning rate is decreased by a factor of 0.5
at steps 20k, 30k, 40k and 45k. The base learning rate is
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Figure 2: Example of temporal forgery localization. We show top-5 predictions of the model SlowFast+BMN. All end-
points of the two manipulated segments are localized with high precision.

set to 0.02. We use linear warm-up from 10−3 during the
first 500 iterations. All classification models take 16 frames
with a temporal stride of 4 as input, yet the feature extrac-
tion models (SlowFast and X3D-M) for BSN and BMN use
only continuous 8 frames as input for better temporal sensi-
tivity. We use temporal random crop for training, i.e. for a
model requiring T frames× stride τ , we randomly sample a
segment of length T × τ from the video. In some rare cases
where the entire video has less than T × τ frames, we use
loop padding to fill the rest. The input spatial size is fixed
to S = 224. Other training details are the same as those for
image experiments.

For BSN and BMN, since the feature extraction models
take 8 frames as input, we extract features with stride 4. We
set the temporal scale parameter to 50, and linearly inter-
polate the extracted features to the 51 endpoints. We only
use fake videos for training video-based localization mod-
els. We train TEM and PEM in BSN for 20 epochs each. We
train BMN for 9 or 18 epochs according to validation per-
formance. The mini-batch size is set to 128. Other hyper-
parameters follow the original settings of BSN and BMN.
Inference. We scale the input to S × S spatially. On the
temporal dimension, we use two settings for classification
inference (suppose input temporal sampling is T × τ ): (1)
single-crop, or to be more specific, temporally center crop
T × τ frames; (2) multi-crop, i.e. crop multiple segments of
length T × τ to cover the entire video.

For temporal localization, we only keep top 10 predic-
tions per video in terms of confidence score, and for video-
based methods, relevant hyper-parameters are the same as
training.

I.4. More Experiments

Ablation Study on Augmentation. We conduct similar ex-
periments on augmentation with the same settings as Ap-
pendix H.4. As presented in Tab. 4, we observe that our

Table 4: Ablation study on augmentation (video). We
report accuracy and AUC scores of Protocol 1 binary clas-
sification on the validation set with three different levels of
augmentation.

weak aug normal aug enhanced aug
Acc. AUC Acc. AUC Acc. AUC

SlowFast 84.39 91.61 87.75 93.22 88.78 93.88

Table 5: Experiemnts on temporal shuffling. We report
accuracy and AUC scores of Protocol 1 binary classification
on the validation set with three different levels of temporal
shuffling.

shuffle 16 shuffle 64 shuffle all
Acc. AUC Acc. AUC Acc. AUC

SlowFast 88.63 94.11 86.24 93.00 85.04 91.74

video-level forgery classification method is less affected by
augmentation than its image-level counterpart.
Temporal Shuffling Experiments. To verify the effect of
continuous temporal information for video forgery classi-
fication, we train the SlowFast model with different levels
of temporal random shuffling to disrupt temporal continu-
ity: shuffle every 16 frames, shuffle every 64 frames, and
shuffle all frames. The results in Tab. 5 indicate that tem-
poral disruptions have considerable, but not very major im-
pact on the performance video classification, implying the
video model may have leveraged other sources of informa-
tion than the continuous temporal flow. An interesting find-
ing is that a weak level of random shuffling (shuffle 16) even
slightly boosts the AUC score compared to the setting with-
out shuffling recorded in Tab. 4.

I.5. Temporal Localization Analysis

We present an example of temporal forgery localization
in Fig. 2. This data sample demonstrates the ability of a



boundary-aware model to locate the transitions between real
and fake. All endpoints are accurately pointed out by the
BMN model. Note that there exist some highly similar pre-
dictions, yet are suppressed by a SoftNMS process.
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