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Abstract

We develop a 3D object detection algorithm that uses

latent support surfaces to capture contextual relationships

in indoor scenes. Existing 3D representations for RGB-D

images capture the local shape and appearance of object

categories, but have limited power to represent objects with

different visual styles. The detection of small objects is also

challenging because the search space is very large in 3D

scenes. However, we observe that much of the shape vari-

ation within 3D object categories can be explained by the

location of a latent support surface, and smaller objects

are often supported by larger objects. Therefore, we ex-

plicitly use latent support surfaces to better represent the

3D appearance of large objects, and provide contextual

cues to improve the detection of small objects. We evaluate

our model with 19 object categories from the SUN RGB-D

database, and demonstrate state-of-the-art performance.

1. Introduction

Object detection, typically formalized as the 2D label-

ing of image pixels, is one of the most widely studied se-

mantic scene understanding problems [14, 33, 19]. Re-

cent advances in direct depth sensing technologies have

in turn enabled more accurate algorithms for 3D segmen-

tation [29, 30, 1], reconstruction [6], synthesis [41], au-

tonomous driving [12], and 3D object detection [40, 34].

Given an RGB-D image, the goal of 3D object detec-

tion is to recover 3D bounding boxes that capture the cu-

bical space that objects occupy in the scene. Such rep-

resentations are more powerful than 2D bounding boxes.

In indoor scenes, 3D bounding boxes encode the spatial

extent of objects, which can help autonomous robots bet-

ter interact with their environment. In outdoor scenes,

3D bounding boxes also contain information about object

orientation that is crucial for autonomous driving applica-

tions [4]. Previous work has described 3D scenes via a

holistic contextual CRF model [25], or aligned CAD models

to point cloud data [39, 17] in the small-scale NYU Depth

dataset [37]. The larger-scale SUN RGB-D dataset [38] has

enabled more recent methods that use deep neural networks

to efficiently propose and categorize objects [40, 8, 23],

or more accurately categorize objects via the viewpoint-

invariant cloud of oriented gradient (COG) descriptor [34].

However, existing 3D detection algorithms suffer some

common problems. Given diverse objects in the same cate-

gory, modeling different visual styles is often very challeng-

ing [10], and ground truth annotations of 3D cuboids can

vary among different human annotators (see Fig. 1). More-

over, objects with smaller physical size are hard to detect

because the search space in the whole scene is very big, and

bottom-up proposals typically contain many false positives.

State-of-the-art 3D object features, such as COG [34]

and TSDF [40], are calculated for a grid of voxels within

each hypothesized 3D cuboid. A major cause of feature in-

consistency across different object instances is variation in

the location of the supporting surface contained by many

indoor objects. We treat the height of the support surface

as a latent variable, and use it to distinguish different visual

styles of the same object category.

Modeling support surface can also help detect smaller

objects like monitors, lamps, TVs, and pillows. Since small

objects are typically placed on the supporting surfaces of

large objects, we first detect large objects on the ground and

predict their support surface location, and then search for

small objects on top of support surface areas. The reduced

search space for small objects naturally reduces false posi-

tives and improves performance.

Building on the cascaded 3D scene understanding frame-

work of Ren et al. [34], the contributions of this paper in-

clude the introduction of new 3D view features that improve

3D detection systems, the modeling of support surfaces as

latent variables capturing intra-class variation for large ob-

jects, and the use of support surfaces to more accurately de-

tect small objects. We evaluate our algorithm on the SUN

RGB-D dataset [38] and achieve state-of-the-art accuracy in

the 3D detection of 19 object categories.

2. Related Work

2D Object detection We highlight some of the most

related work in the rich literature on object detection.
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COG descriptor for bed

COG descriptor for bed surface

Figure 1. A visualization of 3D object detection system for beds and pillows using latent support surfaces. Given input RGB-D images, we

use our learned COG descriptor [34] to localize 3D objects and infer latent support surfaces (shaded) for 3D proposals of beds (red). Then

we search for pillows (green) that lie on top of the inferred support surfaces.

Dalal and Triggs [7] introduced the histogram of ori-

ented gradient (HOG) descriptor to model 2D object ap-

pearance. Building on HOG, Felzenszwalb et al. [9] use

a discriminately-trained part-based model to represent ob-

jects. This method is effective because it explicitly mod-

els object parts as latent variables, which implicitly encode

object style variations. More recently, many papers have

used convolutional neural networks (CNNs) to extract rich

features from images [14, 13, 33, 19, 26]. These methods

achieve state-of-the-art performance and efficient detection

speed [31, 32], but in cluttered indoor scenes, accurate 2D

object localization remains a challenging task.

3D Object Detection Increasingly, real-world computer

vision systems often incorporate depth data as additional

input to increase accuracy and robustness. There have re-

cently been significant advances in methods for 3D object

classification [45, 42], point cloud segmentation [29, 30],

room layout prediction [24, 35], 3D object context [36, 49],

and 3D shape reconstruction [43, 6]. Here, we focus on the

related problem of 3D object detection.

In outdoor scenes, object localization with 3D cuboids

has become a new standard in the popular KITTI au-

tonomous driving benchmark [12]. 3D detection systems

model car shape and occlusion patterns [4, 28, 46] using

lidar or stereo inputs, and may also incorporate additional

bird’s eye view data [5]. However, methods for outdoor 3D

detection are usually focused on the identification of vehi-

cles and pedestrians in open scenes, and do not generalize

to more challenging detection tasks in cluttered scenes.

In indoor scenes, a larger number of object categories

is common, and categories have greater shape and style

variations. Because indoor objects are often heavily oc-

cluded by their cluttered environments, localizing objects

with 3D cuboids [25, 16] instead of 2D bounding boxes can

be more useful. Some work aligns 3D CAD models to ob-

jects in RGB-D inputs [17, 39], as evaluated on the small-

scale NYU Depth dataset [37], but the computational cost

is usually expensive. A simple 3D convolutional neural net-

work was designed to detect simple objects in real time [27].

Other work utilizes pretrained 2D detectors or region pro-

posals as priors, and localizes 3D bounding boxes via a sep-

arate CNN [40, 8, 23]. Those methods can achieve good

performance with great computational speed, but are very

sensitive to the accuracy of 2D object proposals. Ren et

al. [34] introduce the clouds of oriented gradient (COG)

to represent 3D cuboids and perform holistic scene under-

standing with a cascaded prediction framework [20]. Al-

though this work achieves state-of-the-art performance on

the SUN RGB-D dataset [38] for 10 large object categories,

it cannot be directly used to detect smaller objects because

it requires exhaustive search in 3D space. In addition, the

COG feature does not capture object style variations.

Support Surface Prediction Detecting support surfaces

is an essential first step in understanding the geometry of 3D

scenes for such tasks as surface normal estimation [44, 11]

and shape retrieval [2]. Silberman et al. [37] use seman-

tic segmentation to model object support relationships; this

work was later extended by Guo et al. [15] for support sur-

face prediction. However, support surfaces have not been

previously used to enable 3D object detection. In this work,

we treat support surfaces as latent variables to capture ob-

ject style variations, and use them to localize small objects.

We demonstrate the effectiveness of our 3D object detection

framework on the SUN RGB-D dataset [38].

3. 3D Detection using Clouds of Gradients

Feature extraction is one of the most important steps

for object detection algorithms. 2D object detectors typi-
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cally use either hand-crafted features based on image gra-

dients [7, 9] or learned features from deep neural net-

works [14, 13, 33, 19, 26]. For 3D object detection systems

with additional depth inputs, Gupta et al. [18] use horizontal

disparity, height above ground, and the angle of pixels local

surface normal to encode images as a three channel (HHA)

map for input to a convolutional neural network. While such

convolutional processing of 2D images may be used to ex-

tract features from 2D bounding boxes, it does not directly

provide a method for recovering 3D bounding boxes.

Song et al. [39] use 3D truncated signed distance func-

tion (TSDF) features to encode 3D cuboids, and their sub-

sequent deep sliding shape [40] method aggregates TSDF

with standard 2D features from a deep convolutional neural

network. However, those features do not explicitly capture

3D orientation. We instead build our 3D detection algorithm

on the cloud of oriented gradients (COG) descriptor [34].

We briefly review this approach in this section, and intro-

duce simple extensions that improve its performance.

Clouds of Oriented Gradients Given cuboid proposals

for multiple instances of some object category, as observed

in RGB-D images, they are first transformed into a canon-

ical coordinate frame. Point cloud densities and 3D nor-

mal histograms are used to model the geometric features

for each voxel in a 5 × 5 × 5 grid. For object appearance

features, image gradients are binned in histograms accord-

ing to perspective geometry in each object proposal. This

novel COG feature is a 3D variant of the HOG descrip-

tor [7]. Because image gradients are binned with respect

to individual bounding box proposals, this feature is an

orientation-invarient representation for 3D objects and can

also be used for room layout prediction [34]. The detec-

tor of each object category is trained discriminatively using

structural SVM [22] with a loss function that penalizes loca-

tion and orientation errors. When analyzing 3D test scenes,

we propose several cuboid sizes using empirical statistics of

the training set, and use 3D sliding windows to evaluate the

evidence for objects at various 3D poses.

3D objects with locally similar geometric shapes usu-

ally confuse object detectors that are run for each object

category independently, resulting in many false positive de-

tections. While simple heuristics [39] cannot fully resolve

this problem, Ren et al. [34] propose to use a cascaded pre-

diction framework [20] to learn the contextual relationship

among objects. For overlapping pairs of detected bounding

boxes, 3D overlap features and detection score differences

are used to train a binary SVM to indicate whether bounding

boxes are true or false positives. This second-stage detec-

tion score is added to the original detection score, resulting

in a holistic scene understanding output [38].

Ren et al. [34] augment the COG feature for each cuboid

with simple geometric histograms that have limited discrim-

inative power. Here we introduce two novel 3D cuboid fea-

tures that are suitable for 3D detection systems.

View-to-Camera Feature For single view RGB-D in-

puts, an object like nightstand may only expose one planer

surface to the camera. At test time, features of a 3D

cuboid proposal whose orientation is facing backwards re-

sembles those of a correct detection (Fig. 2). This is because

voxel features are computed by first rotating the cuboid to

a canonical coordinate frame. However, due to the self-

occlusions that occur in real objects, the features modeled

by the COG descriptor would in fact not be visible when ob-

jects are facing away from the camera. Therefore, we add

features to represent objects’ view to camera, and learn to

explicitly distinguish implausible object orientations.

Specifically, we compute the cosine x of the angle be-

tween the cuboid orientation and its viewing angle from

camera in horizontal direction. Then we define a set of ra-

dial basis functions of the form

fj(x) = exp

(

−
(x− µj)

2

2σ2

)

,

and space the basis function centers µj evenly between

Figure 2. A false positive 3D detection for nightstand without us-

ing view-to-camera feature (left). The COG feature is similar to

that of a correct detection (right) but the orientation is flipped.
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[−1, 1] with step size 0.2. The bandwidth σ = 0.5 was

chosen using validation data. Radial basis expansions are a

standard approach to non-linear regression, and can also be

seen as a layer of a neural network. We expand the camera

angle using this basis representation and refer to the result-

ing 11-dimensional vector as the view-to-camera feature.

Scene Layout Feature The interaction between objects

and the scene layout (floor, walls, ceiling) provides impor-

tant cues for object detection. For example, Song et al. [40]

propose 3D objects along the predicted walls of the scene.

Ren et al. [34] introduce a Manhattan voxel discretization to

better predict scene layouts and model object-layout inter-

actions. We model object-layout interactions by first com-

puting the distance and angle to the nearest predicted wall

using Manhattan voxels [34], then expand the distance-to-

wall value using radial basis functions spaced between [0, 5]
with step size 0.5. We also expand the absolute cosine value

of the angle-to-wall using radial basis functions spaced be-

tween [0, 1] with step size 0.2 and σ = 0.5. Combining

these layout features with the view-to-camera feature, we

are able to improve detection performance for most object

categories (see Table 1).

4. Modeling Latent Support Surfaces

Geometric descriptors and COG descriptors [34] are able

to capture local shapes and appearances. However, 3D ob-

jects in indoor scenes have widely varying visual styles.

Moreover, 3D cuboid annotations are labeled by different

people from Mechanical Turk in SUN RGB-D dataset [38],

thus objects in the same category may have inconsistent 3D

annotations. As a result, features are inevitably noisy and

inconsistent across different object instances (see Fig. 3).

To explicitly model different visual styles for each ob-

jects, a classical approach is to use part-based models [9,

10] where objects are explained by spatially arranged parts.

However, indoor objects have very diverse visual styles, and

it is very challenging to design a consistently varying set of

latent parts. However, for many object categories, the height

of the support surface is the primary cause of style varia-

tions (Fig. 3). Therefore, we explicitly model the support

surface as a latent part for each object.

By modeling support surfaces we can also constrain the

search space for small object detectors. Such detectors are

otherwise intractable to learn and perform poorly due to the

large set of possible 3D poses [34].

4.1. Latent Structural SVM Learning

Some previous work was specifically designed to pre-

dict the area of support surface regions [15], but the pre-

dicted support surfaces are not semantically meaningful. In-

spired by deformable part-based models for 2D object de-

tection [9], we propose to treat the relative height of the

Figure 3. Different surface heights for “desk” in SUN RGB-D

dataset [38] lead to inconsistent 3D COG representations [34].

support surface of each object as a latent variable and use

latent structural SVMs [47] to learn the detector.

We follow the notation of Ren et al. [34] with an updated

learning objective. For each category c, our goal is to learn

a prediction function I → (B, h) that maps an RGB-D im-

age I to a 3D bounding box B = (L, θ, S, y) along with its

relative surface height h. L is the center of the cuboid in

3D, θ is the cuboid orientation, S is the physical size of the

cuboid along the three axes determined by its orientation,

and y is an indicator variable representing the existence of

such prediction. The latent variable h is defined as the rel-

ative surface height to the bottom of the cuboid. We dis-

cretize cuboid height to 7 slices, and thus h localizes the

support surface to one of those slices (see Fig. 4).

Given n training examples of category c, we want to

solve the following optimization problem:

min
wc,ξ≥0

1

2
wT

c wc +
C

n

n
∑

i=1

ξi subject to

max
hi∈H

wT
c φ(Ii, Bi, hi)− max

h̄i∈H
wT

c φ(Ii, B̄i, h̄i)

≥ ∆(Bi, B̄i, h̄i)− ξi, for all B̄i ∈ Bi, i = 1, . . . , n.

Here Bi is the ground-truth bounding box, Bi is the set

of possible bounding boxes, and H is the set of possi-

ble surface heights. φ(I, B, h) are the features associated

to cuboid B whose relative surface height is indicated by

h. We first discretize B into 5 × 5 × 5 voxels and com-

pute geometric features, COG [34], view-to-camera fea-

ture, and scene layout feature, as denoted by φcuboid(I, B).
Then we discretize B with finer resolutions at the vertical

dimension into 5 × 5 × 7 voxels and take the h-th slice

from the bottom to represent cuboid feature, as denoted by

φsurface(I, B, h). Finally we add an indicator vector for sup-

port surface height, so that

φ(I, B, h) = [φcuboid(I, B), φsurface(I, B, h), 0, ..., 1, ..., 0].
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(0, 0, 0, 1, 0, 0, 0)

Figure 4. Features of 3D cuboid with support surface. The surface

feature is computed at a single slice of the cuboid followed by an

indicator vector to represent the relative height.

If the indicator variable y in B is 0, meaning there’s no

detection, we set the feature vector to be all zeros. A visu-

alization of support surface feature is shown in Fig. 4.

Following Ren et al. [34] we define a loss function for

cuboid proposals B̄: If a scene contain ground truth cuboid

B and indicator variable ȳ is 1, we compute

∆(B, B̄) = 1− IOU(B, B̄) ·

(

1 + cos(θ̄ − θ)

2

)

.

where IOU(B, B̄) is 3D intersection over union. The scale

of this loss function ranges in [0, 1]. If a scene doesn’t con-

tain any ground truth cuboid and the indicator variable ȳ is

0 for the cuboid proposal, the loss is set to be 0. We penalize

all other cases with a loss of 1.

To train the model with latent support surfaces, we fol-

low Ren et al. [34] by pre-training cuboid descriptors (ge-

ometric features, COG, view-to-camera, and scene layout

feature) without modeling support surface. We then extract

the center slice of pre-trained cuboid descriptors and con-

catenate it to the pre-trained models. Finally, we initial-

ize the support surface height indicator vector randomly in

[0, 1]. We use the CCCP algorithm [48] to solve the result-

ing latent structural SVM learning problem [47].

4.2. Small Object Detection on Support Surfaces

In indoor scenes, besides large furniture like beds and

chairs, many other objects with comparatively small phys-

ical size are very hard to detect [40, 34]. Some algorithms

are specifically designed to detect small objects in 2D im-

ages using multi-scale methods [3, 21], but they cannot be

directly applied to 3D object detection.

The biggest issue for detecting small objects is that the

search space can be enormous, and thus training and test-

Figure 5. To model contextual relationships between small objects

and the large objects supporting them, we compute the 2D overlap

between 3D bounding boxes from the top-down view.

ing with a sliding-windows based approach are usually in-

tractable. But note that small objects, such as pillows and

monitors and lamps, are usually placed on top of other ob-

jects with support surfaces. If we only search for small ob-

jects on predicted support surfaces, the search space will be

greatly reduced. As a result, the inference speed will be

improved and object proposals contain less false positives.

This is another benefit of modeling support surfaces.

In our implementation, we first detect large objects of

indoor scenes that are on the ground [34], then we search for

smaller objects only on top of the support surfaces of those

large objects with positive confidence scores. We reduce the

voxel descritization size to be 3×3×3 for lamps and pillows

because small cuboids contain less pixels, and 3× 1× 3 for

monitors and TVs because they have thin shapes.

4.3. Spatial Contextual Learning for All Objects

Our object detector is trained discriminatively for each

object category. At test time, 3D objects with locally similar

shapes can confuse 3D detectors trained for each object cat-

egory independently. Instead of designing simple heuristics

to handle false positives, we follow Ren et al. [34] by using

an effective cascaded detection framework [20] to model

contextual relationships among cuboid proposals.

For each 3D cuboid proposal, we encode its contextual

relationship with the highest confidence cuboid proposals

in all object categories using 3D overlapping features and

confidence differences. Using those contextual features we

learn a linear SVM to determine whether those 3D object

proposals are correct or not, and add this updated confi-

dence score to first-stage detection scores. We refer read-

ers to the supplementary material of Ren et al. [34] for a

detailed explaination. For small objects that are placed on

the support surfaces of large objects, 3D overlap features

are noisy. We replace 3D overlap with 2D overlap scores

from the top-down view of the scene (Fig. 5). With updated

confidence scores that account for both original beliefs and

contextual cues, object proposals contain fewer false posi-

tives and object detectors have improved performance.
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Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toilet Box Door Counter Garbage-bin Sink Pillow Monitor TV Lamp
mAP

(10)

mAP

(19)

COG 49.8 53.0 8.5 39.0 14.9 5.5 12.8 52.8 26.0 34.5 11.6 0.9 2.4 20.1 30.3 0.0 0.0 0.0 0.0 29.68 19.1

+view 60.2 59.3 18.4 40.4 18.0 9.5 16.8 53.2 26.8 41.6 11.0 3.2 4.6 21.8 30.6 0.0 0.0 0.0 0.0 34.4 21.9

+surface 66.6 68.0 21.5 42.0 26.0 8.5 17.1 52.8 39.0 45.8 11.3 2.6 4.0 19.7 60.9 9.9 1.6 0.4 9.6 38.7 26.7

+cascade 76.2 73.2 32.9 60.5 34.5 13.5 30.4 60.4 55.4 73.7 19.5 5.4 10.7 34.6 75.3 12.5 1.6 2.1 16.9 51.0 36.3

SS [39] - 43.0 - 28.2 - - - 20.6 19.7 60.9 - - - - - - - - - - -

DSS [40] 44.2 78.8 11.9 61.2 20.5 6.4 15.4 53.5 50.3 78.9 1.5 0.0 4.1 20.4 32.3 13.3 0.2 0.5 18.4 42.1 26.9

Ren [34] 58.3 63.7 31.8 62.2 45.2 15.5 27.4 51.0 51.3 70.1 - - - - - - - - - 47.6 -

Lahoud [23] 43.5 64.5 31.4 48.3 27.9 25.92 41.9 40.39 37.0 80.4 - - - - - - - - - 45.1 -

Table 1. Experiment results on SUN RGB-D dataset [38]. Our baseline method uses COG descriptor. Adding extra features to model view-

to-camera and scene layout (+view) improves performance, and modeling support surfaces (+surface) not only help detect large objects but

also reduce many false positives for small objects (last 4 categories). The final stage cascaded detection framework [34] (+cascade) models

object context and help boost the performance to the state-of-the-art over existing methods for the first 10 and all 19 object categories.

Bathtub Bed Bookshelf Chair Desk Dresser Nightstand Sofa Table Toilet Box Door Counter Garbage-bin Sink Pillow Monitor TV Lamp
mAP

(10)

mAP

(19)

Whole System 76.2 73.2 32.9 60.5 34.5 13.5 30.4 60.4 55.4 73.7 19.5 5.4 10.7 34.6 75.3 12.5 1.3 2.1 16.9 51.0 36.3

-view-surface 53.3 63.0 18.7 61.6 29.0 7.5 20.2 58.8 49.1 62.8 17.3 1.1 6.6 39.1 60.3 0.0 0.0 0.0 0.0 42.4 28.9

Table 2. We compare our holistic scene understanding system with cascaded detection on SUN-RGBD dataset [38]. Although cascaded

detection is powerful, there is still a drop in performance without modeling view-to-camera feature, scene layout and support surfaces.

Bed Table Desk Nightstand

Sink Bathtub Pillow Lamp
Figure 6. Precision-Recall curves for several object categories including small objects (pillow and lamp) on SUN RGB-D dataset [38].

5. Experiments

We train our 3D object detection algorithm solely on the

SUN RGB-D dataset [38] with 5285 training images, and

report performance on 5050 test images for all 19 object

categories (Table 1). The NYU Depth dataset [37] has 3D

cuboid labels for 1449 images, but annotations are noisy

and inconsistent. Some previous work has only evaluated

detection performance on this small dataset [17], or de-

fined their own annotations for 3D cuboids [8]. Because the

SUN RGB-D dataset contains all images from NYU Depth

dataset with more accurate annotations, we do not evaluate

on the NYU Depth dataset in this paper.

Baseline Algorithm using COG We implement a base-

line detector using only COG features [34] and local geo-

metric features of the point cloud. This method is denoted

by “COG” in the first row of Table 1. Note that this detec-

tors’ performances is slightly different from the first stage

detection scores in Ren et al. [34] because we are using a

coarser 5× 5× 5 discretization (versus 6× 6× 6) for each

cuboid. With reduced feature size, our algorithm is more

computationally efficient but has similar accuracy.
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Effectiveness of View-based Features By adding extra

view-to-camera features and scene layout features, denoted

by “+view” in the second row of Table 1, we witness no-

table improvements on detecting small objects with a lay-

ered shape such as dressers and nightstands. Those objects

usually expose only one side to the camera, and the view-

to-camera feature is helpful in distinguishing correct predic-

tions. With scene layout features, we also witness improve-

ments for objects whose orientations strongly correlate with

directions of walls, such as beds and bookshelves.

Modeling Latent Support Surfaces For objects such as

beds, tables, and desks, modeling support surface as a latent

variable help capture the intra-class style variations within

each cuboid and we witness great performance gains in the

third row of Table 1. We visualize examples of inferred

support surfaces in Figure 7. For objects that do not have

explicit “support surfaces”, such as bathtub, bookshelf, and

sink, our model can be viewed as a single part-based model

and is also effective for 3D object detection. Note that the

goal of this work is to model latent support surface in order

to help 3D detection, not to predict accurate support surface

area of the scene. We do not use any annotations of sup-

port surfaces when training, and also do not evaluate our

performance on surface prediction benchmarks [15].

Small Object Detection Detecting small objects is a

challenging task and is still an open problem. Without

modeling support surfaces, our baseline method fails to de-

tect small objects because the search space is large and

3D object proposals contain many false positives. Us-

ing simple heuristics to check support relationships in

the SUN-RGBD annotations, we find more than 95% of

lamps/pillows/monitors/TVs are placed on the surface of

night-stands/tables/beds/desks/dressers. Searching on the

predicted surface region enables our algorithm to discover

small objects with higher precision. See row 3 in Table 1.

Comparison to Other Methods By modeling latent sup-

port surface, our algorithm already outperforms the state-

of-the-art method of Ren et al. [34] for 10 large object cat-

egories, and can also detect some smaller objects. In this

paper our main goal is to demonstrate the effectiveness of

modeling latent support surface, and we think the current

system already shows great potential.

Comparing with other algorithms that use CNN fea-

tures [40, 23] pretrained on external datasets, the perfor-

mance of our algorithm is comparable even without the cas-

caded prediction step. Conventional CNNs for 3D detec-

tion [40, 23] are trained to produce weighted confidence

scores for each of multiple object categories, while our first-

stage detector algorithm is instead tuned to discriminatively

localize individual categories in 3D. Our subsequent cas-

caded prediction [20] of contextual relationships between

object detections has structural similarities to a multi-stage

neural network, but it is trained using (convex) structural

SVM loss functions and designed to have a more inter-

pretable, graphical structure. Interestingly, our cascaded

approach is comparable to or more accurate than standard

3D CNNs [40, 23] in the detection of both 10 and 19 object

categories.

Computational Speed We implemented our algorithm

using MATLAB in a 2.5GHz single core CPU. The com-

putational speed of our algorithm is 10-30min per image,

which is slightly better than the reported speed in Ren et

al. [34]. The most time-consuming part is the feature com-

putation step, which could be improved by using paral-

lel computing with multi-core CPUs or GPUs. With pre-

computed cuboid features for each RGB-D image, the in-

ference time is 2sec for each object category. With pre-

computed contextual features among all objects, the cas-

caded prediction framework takes less than 0.5sec on aver-

age to run.

Failure Cases An typical failure case for our algorithm is

shown in the last row of Fig. 7, where missing depth val-

ues cause objects to be missed. While it is true that some

small objects will be missed when we fail to detect their

supporting surface, given the extreme difficulty of detecting

small objects in highly cluttered indoor scenes, there are

still substantial net benefits to exploiting support relation-

ships for 3D detection. Some previous work was specifi-

cally designed to solve this issue [8, 23] by using CNN fea-

tures in RGB images, and we believe incorporating a similar

approach in our cascaded prediction framework might also

help resolve this failure case.

6. Conclusions

We designed a 3D object detection system using latent

support surfaces. Modeling the height of the support sur-

face as a latent variable leads to improved detection per-

formance for large objects, and contrains the search space

for small object detectors. Via a cascaded prediction frame-

work our detector achieves state-of-the-art performance on

the SUN RGB-D dataset, demonstrating the effectiveness of

modeling support surfaces in 3D object detection.
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Groundtruth Annotations for RGB-D Images Our Final Stage 3D Detection Output

Figure 7. Visualizing our final stage 3D detections for objects with high confidence scores. Support surfaces are depicted with faded colors

inside each large object. We show one failure case at the bottom: our algorithm failed to detect a dresser and a nightstand due to missing

depth inputs (dark blue). As a result, the lamps supported by those objects are missed as well.
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